2,081 research outputs found

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas

    System configuration and executive requirements specifications for reusable shuttle and space station/base

    Get PDF
    System configuration and executive requirements specifications for reusable shuttle and space station/bas

    Tools for distributed application management

    Get PDF
    Distributed application management consists of monitoring and controlling an application as it executes in a distributed environment. It encompasses such activities as configuration, initialization, performance monitoring, resource scheduling, and failure response. The Meta system (a collection of tools for constructing distributed application management software) is described. Meta provides the mechanism, while the programmer specifies the policy for application management. The policy is manifested as a control program which is a soft real-time reactive program. The underlying application is instrumented with a variety of built-in and user-defined sensors and actuators. These define the interface between the control program and the application. The control program also has access to a database describing the structure of the application and the characteristics of its environment. Some of the more difficult problems for application management occur when preexisting, nondistributed programs are integrated into a distributed application for which they may not have been intended. Meta allows management functions to be retrofitted to such programs with a minimum of effort

    Processamento de eventos complexos como serviço em ambientes multi-nuvem

    Get PDF
    Orientadores: Luiz Fernando Bittencourt, Miriam Akemi Manabe CapretzTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O surgimento das tecnologias de dispositivos mĂłveis e da Internet das Coisas, combinada com avanços das tecnologias Web, criou um novo mundo de Big Data em que o volume e a velocidade da geração de dados atingiu uma escala sem precedentes. Por ser uma tecnologia criada para processar fluxos contĂ­nuos de dados, o Processamento de Eventos Complexos (CEP, do inglĂȘs Complex Event Processing) tem sido frequentemente associado a Big Data e aplicado como uma ferramenta para obter informaçÔes em tempo real. Todavia, apesar desta onda de interesse, o mercado de CEP ainda Ă© dominado por soluçÔes proprietĂĄrias que requerem grandes investimentos para sua aquisição e nĂŁo proveem a flexibilidade que os usuĂĄrios necessitam. Como alternativa, algumas empresas adotam soluçÔes de baixo nĂ­vel que demandam intenso treinamento tĂ©cnico e possuem alto custo operacional. A fim de solucionar esses problemas, esta pesquisa propĂ”e a criação de um sistema de CEP que pode ser oferecido como serviço e usado atravĂ©s da Internet. Um sistema de CEP como Serviço (CEPaaS, do inglĂȘs CEP as a Service) oferece aos usuĂĄrios as funcionalidades de CEP aliadas Ă s vantagens do modelo de serviços, tais como redução do investimento inicial e baixo custo de manutenção. No entanto, a criação de tal serviço envolve inĂșmeros desafios que nĂŁo sĂŁo abordados no atual estado da arte de CEP. Em especial, esta pesquisa propĂ”e soluçÔes para trĂȘs problemas em aberto que existem neste contexto. Em primeiro lugar, para o problema de entender e reusar a enorme variedade de procedimentos para gerĂȘncia de sistemas CEP, esta pesquisa propĂ”e o formalismo Reescrita de Grafos com Atributos para GerĂȘncia de Processamento de Eventos Complexos (AGeCEP, do inglĂȘs Attributed Graph Rewriting for Complex Event Processing Management). Este formalismo inclui modelos para consultas CEP e transformaçÔes de consultas que sĂŁo independentes de tecnologia e linguagem. Em segundo lugar, para o problema de avaliar estratĂ©gias de gerĂȘncia e processamento de consultas CEP, esta pesquisa apresenta CEPSim, um simulador de sistemas CEP baseado em nuvem. Por fim, esta pesquisa tambĂ©m descreve um sistema CEPaaS fundamentado em ambientes multi-nuvem, sistemas de gerĂȘncia de contĂȘineres e um design multiusuĂĄrio baseado em AGeCEP. Para demonstrar sua viabilidade, o formalismo AGeCEP foi usado para projetar um gerente autĂŽnomo e um conjunto de polĂ­ticas de auto-gerenciamento para sistemas CEP. AlĂ©m disso, o simulador CEPSim foi minuciosamente avaliado atravĂ©s de experimentos que demonstram sua capacidade de simular sistemas CEP com acurĂĄcia e baixo custo adicional de processamento. Por fim, experimentos adicionais validaram o sistema CEPaaS e demonstraram que o objetivo de oferecer funcionalidades CEP como um serviço escalĂĄvel e tolerante a falhas foi atingido. Em conjunto, esses resultados confirmam que esta pesquisa avança significantemente o estado da arte e tambĂ©m oferece novas ferramentas e metodologias que podem ser aplicadas Ă  pesquisa em CEPAbstract: The rise of mobile technologies and the Internet of Things, combined with advances in Web technologies, have created a new Big Data world in which the volume and velocity of data generation have achieved an unprecedented scale. As a technology created to process continuous streams of data, Complex Event Processing (CEP) has been often related to Big Data and used as a tool to obtain real-time insights. However, despite this recent surge of interest, the CEP market is still dominated by solutions that are costly and inflexible or too low-level and hard to operate. To address these problems, this research proposes the creation of a CEP system that can be offered as a service and used over the Internet. Such a CEP as a Service (CEPaaS) system would give its users CEP functionalities associated with the advantages of the services model, such as no up-front investment and low maintenance cost. Nevertheless, creating such a service involves challenges that are not addressed by current CEP systems. This research proposes solutions for three open problems that exist in this context. First, to address the problem of understanding and reusing existing CEP management procedures, this research introduces the Attributed Graph Rewriting for Complex Event Processing Management (AGeCEP) formalism as a technology- and language-agnostic representation of queries and their reconfigurations. Second, to address the problem of evaluating CEP query management and processing strategies, this research introduces CEPSim, a simulator of cloud-based CEP systems. Finally, this research also introduces a CEPaaS system based on a multi-cloud architecture, container management systems, and an AGeCEP-based multi-tenant design. To demonstrate its feasibility, AGeCEP was used to design an autonomic manager and a selected set of self-management policies. Moreover, CEPSim was thoroughly evaluated by experiments that showed it can simulate existing systems with accuracy and low execution overhead. Finally, additional experiments validated the CEPaaS system and demonstrated it achieves the goal of offering CEP functionalities as a scalable and fault-tolerant service. In tandem, these results confirm this research significantly advances the CEP state of the art and provides novel tools and methodologies that can be applied to CEP researchDoutoradoCiĂȘncia da ComputaçãoDoutor em CiĂȘncia da Computação140920/2012-9CNP

    A Systematic Approach to Constructing Families of Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    In the communication systems domain, constructing and maintaining network topologies via topology control (TC) algorithms is an important cross-cutting research area. Network topologies are usually modeled using attributed graphs whose nodes and edges represent the network nodes and their interconnecting links. A key requirement of TC algorithms is to fulfill certain consistency and optimization properties to ensure a high quality of service. Still, few attempts have been made to constructively integrate these properties into the development process of TC algorithms. Furthermore, even though many TC algorithms share substantial parts (such as structural patterns or tie-breaking strategies), few works constructively leverage these commonalities and differences of TC algorithms systematically. In previous work, we addressed the constructive integration of consistency properties into the development process. We outlined a constructive, model-driven methodology for designing individual TC algorithms. Valid and high-quality topologies are characterized using declarative graph constraints; TC algorithms are specified using programmed graph transformation. We applied a well-known static analysis technique to refine a given TC algorithm in a way that the resulting algorithm preserves the specified graph constraints. In this paper, we extend our constructive methodology by generalizing it to support the specification of families of TC algorithms. To show the feasibility of our approach, we reneging six existing TC algorithms and develop e-kTC, a novel energy-efficient variant of the TC algorithm kTC. Finally, we evaluate a subset of the specified TC algorithms using a new tool integration of the graph transformation tool eMoflon and the Simonstrator network simulation framework.Comment: Corresponds to the accepted manuscrip

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    System data communication structures for active-control transport aircraft, volume 2

    Get PDF
    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems
    • 

    corecore