3,949 research outputs found

    Attribute-Based Encryption Optimized for Cloud Computing

    Get PDF
    Abstract. In this work, we aim to make attribute-based encryption (ABE) more suitable for access control to data stored in the cloud. For this purpose, we concentrate on giving to the encryptor full control over the access rights, providing feasible key management even in case of multiple independent authorities, and enabling viable user revocation, which is essential in practice. Our main result is an extension of the decentralized CP-ABE scheme of Lewko and Waters [LW11] with identity-based user revocation. Our revocation system is made feasible by removing the computational burden of a revocation event from the cloud service provider, at the expense of some permanent, yet acceptable overhead of the encryption and decryption algorithms run by the users. Thus, the computation overhead is distributed over a potentially large number of users, instead of putting it on a single party (e.g., a proxy server), which would easily lead to a performance bottleneck. Besides describing our scheme, we also give a formal proof of its security in the generic bilinear group and random oracle models.

    Privacy-Preserving and Outsourced Multi-User k-Means Clustering

    Get PDF
    Many techniques for privacy-preserving data mining (PPDM) have been investigated over the past decade. Often, the entities involved in the data mining process are end-users or organizations with limited computing and storage resources. As a result, such entities may want to refrain from participating in the PPDM process. To overcome this issue and to take many other benefits of cloud computing, outsourcing PPDM tasks to the cloud environment has recently gained special attention. We consider the scenario where n entities outsource their databases (in encrypted format) to the cloud and ask the cloud to perform the clustering task on their combined data in a privacy-preserving manner. We term such a process as privacy-preserving and outsourced distributed clustering (PPODC). In this paper, we propose a novel and efficient solution to the PPODC problem based on k-means clustering algorithm. The main novelty of our solution lies in avoiding the secure division operations required in computing cluster centers altogether through an efficient transformation technique. Our solution builds the clusters securely in an iterative fashion and returns the final cluster centers to all entities when a pre-determined termination condition holds. The proposed solution protects data confidentiality of all the participating entities under the standard semi-honest model. To the best of our knowledge, ours is the first work to discuss and propose a comprehensive solution to the PPODC problem that incurs negligible cost on the participating entities. We theoretically estimate both the computation and communication costs of the proposed protocol and also demonstrate its practical value through experiments on a real dataset.Comment: 16 pages, 2 figures, 5 table

    Efficient Multi-User Keyword Search over Encrypted Data in Cloud Computing

    Get PDF
    As cloud computing becomes prevalent, more and more sensitive information are being centralized into the cloud. For the protection of data privacy, sensitive data usually have to be encrypted before outsourcing, which makes effective data utilization a very challenging task. In this paper, we propose a new method to enable effective fuzzy keyword search in a multi-user system over encrypted cloud data while maintaining keyword privacy. In this new system, differential searching privileges are supported, which is achieved with the technique of attribute-based encryption. Edit distance is utilized to quantify keywords similarity and develop fuzzy keyword search technique, which achieve optimized storage and representation overheads. We further propose a symbol-based trie-traverse searching scheme to improve the search efficiency. Through rigorous security analysis, we show that our proposed solution is secure and privacy-preserving, while correctly realizing the goal of fuzzy keyword search with multiple users

    Multipath Routing in Cloud Computing using Fuzzy based Multi-Objective Optimization System in Autonomous Networks

    Get PDF
    Intelligent houses and buildings, autonomous automobiles, drones, robots, and other items that are successfully incorporated into daily life are examples of autonomous systems and the Internet of Things (IoT) that have advanced as research areas. Secured data transfer in untrusted cloud applications has been one of the most significant requirements in the cloud in recent times. In order to safeguard user data from unauthorised users, encrypted data is stored on cloud servers. Existing techniques offer either security or efficiency for data transformation. They fail to retain complete security while undergoing significant changes. This research proposes novel technique in multipath routing based energy optimization of autonomous networks. The main goal of this research is to enhance the secure data transmission in cloud computing with network energy optimization. The secure data transmission is carried out using multi-authentication attribute based encryption with multipath routing protocol. Then the network energy has been optimized using multi-objective fuzzy based reinforcement learning. The experimental analysis has been carried out based on secure data transmission and energy optimization of the network. The parameters analysed in terms of scalability of 79%, QoS of 75%, encryption time of 42%, latency of 96%, energy efficiency of 98%, end-end delay of 45%

    On the feasibility of attribute-based encryption on Internet of Things devices

    Get PDF
    Attribute-based encryption (ABE) could be an effective cryptographic tool for the secure management of Internet of Things (IoT) devices, but its feasibility in the IoT has been under-investigated thus far. This article explores such feasibility for well-known IoT platforms, namely, Intel Galileo Gen 2, Intel Edison, Raspberry pi 1 model B, and Raspberry pi zero, and concludes that adopting ABE in the IoT is indeed feasible
    corecore