7,094 research outputs found

    Query-dependent metric learning for adaptive, content-based image browsing and retrieval

    Get PDF

    From Keyword Search to Exploration: How Result Visualization Aids Discovery on the Web

    No full text
    A key to the Web's success is the power of search. The elegant way in which search results are returned is usually remarkably effective. However, for exploratory search in which users need to learn, discover, and understand novel or complex topics, there is substantial room for improvement. Human computer interaction researchers and web browser designers have developed novel strategies to improve Web search by enabling users to conveniently visualize, manipulate, and organize their Web search results. This monograph offers fresh ways to think about search-related cognitive processes and describes innovative design approaches to browsers and related tools. For instance, while key word search presents users with results for specific information (e.g., what is the capitol of Peru), other methods may let users see and explore the contexts of their requests for information (related or previous work, conflicting information), or the properties that associate groups of information assets (group legal decisions by lead attorney). We also consider the both traditional and novel ways in which these strategies have been evaluated. From our review of cognitive processes, browser design, and evaluations, we reflect on the future opportunities and new paradigms for exploring and interacting with Web search results

    Content Based Image Retrieval (CBIR) in Remote Clinical Diagnosis and Healthcare

    Full text link
    Content-Based Image Retrieval (CBIR) locates, retrieves and displays images alike to one given as a query, using a set of features. It demands accessible data in medical archives and from medical equipment, to infer meaning after some processing. A problem similar in some sense to the target image can aid clinicians. CBIR complements text-based retrieval and improves evidence-based diagnosis, administration, teaching, and research in healthcare. It facilitates visual/automatic diagnosis and decision-making in real-time remote consultation/screening, store-and-forward tests, home care assistance and overall patient surveillance. Metrics help comparing visual data and improve diagnostic. Specially designed architectures can benefit from the application scenario. CBIR use calls for file storage standardization, querying procedures, efficient image transmission, realistic databases, global availability, access simplicity, and Internet-based structures. This chapter recommends important and complex aspects required to handle visual content in healthcare.Comment: 28 pages, 6 figures, Book Chapter from "Encyclopedia of E-Health and Telemedicine

    Extraction of object image features with gradation contour

    Get PDF
    Image retrieval using features has been used in previous studies including shape, color, texture, but these features are lagging. With the selection of high-level features with contours, this research is done with the hypothesis that images on objects can also be subjected to representations that are commonly used in natural images. Considering the above matters, we need to research the feature extraction of object images using gradation contour. From the results of the gradation contour test results, there is linearity between the results of accuracy with the large number of images tested. Therefore, it can be said that the influence of the number of images will affect the accuracy of classification. The use of contour gradation can be accepted and treated equally in all image types, so there is no more differentiation between image features. The complexity of the image does not affect the method of extracting features that are only used uniquely by an image. From the results of testing the polynomial coefficient savings data as a result of the gradation contour, the highest result is 81.40% with the highest number of categories and the number of images tested in the category is also higher

    Recuperação de informação multimodal em repositórios de imagem médica

    Get PDF
    The proliferation of digital medical imaging modalities in hospitals and other diagnostic facilities has created huge repositories of valuable data, often not fully explored. Moreover, the past few years show a growing trend of data production. As such, studying new ways to index, process and retrieve medical images becomes an important subject to be addressed by the wider community of radiologists, scientists and engineers. Content-based image retrieval, which encompasses various methods, can exploit the visual information of a medical imaging archive, and is known to be beneficial to practitioners and researchers. However, the integration of the latest systems for medical image retrieval into clinical workflows is still rare, and their effectiveness still show room for improvement. This thesis proposes solutions and methods for multimodal information retrieval, in the context of medical imaging repositories. The major contributions are a search engine for medical imaging studies supporting multimodal queries in an extensible archive; a framework for automated labeling of medical images for content discovery; and an assessment and proposal of feature learning techniques for concept detection from medical images, exhibiting greater potential than feature extraction algorithms that were pertinently used in similar tasks. These contributions, each in their own dimension, seek to narrow the scientific and technical gap towards the development and adoption of novel multimodal medical image retrieval systems, to ultimately become part of the workflows of medical practitioners, teachers, and researchers in healthcare.A proliferação de modalidades de imagem médica digital, em hospitais, clínicas e outros centros de diagnóstico, levou à criação de enormes repositórios de dados, frequentemente não explorados na sua totalidade. Além disso, os últimos anos revelam, claramente, uma tendência para o crescimento da produção de dados. Portanto, torna-se importante estudar novas maneiras de indexar, processar e recuperar imagens médicas, por parte da comunidade alargada de radiologistas, cientistas e engenheiros. A recuperação de imagens baseada em conteúdo, que envolve uma grande variedade de métodos, permite a exploração da informação visual num arquivo de imagem médica, o que traz benefícios para os médicos e investigadores. Contudo, a integração destas soluções nos fluxos de trabalho é ainda rara e a eficácia dos mais recentes sistemas de recuperação de imagem médica pode ser melhorada. A presente tese propõe soluções e métodos para recuperação de informação multimodal, no contexto de repositórios de imagem médica. As contribuições principais são as seguintes: um motor de pesquisa para estudos de imagem médica com suporte a pesquisas multimodais num arquivo extensível; uma estrutura para a anotação automática de imagens; e uma avaliação e proposta de técnicas de representation learning para deteção automática de conceitos em imagens médicas, exibindo maior potencial do que as técnicas de extração de features visuais outrora pertinentes em tarefas semelhantes. Estas contribuições procuram reduzir as dificuldades técnicas e científicas para o desenvolvimento e adoção de sistemas modernos de recuperação de imagem médica multimodal, de modo a que estes façam finalmente parte das ferramentas típicas dos profissionais, professores e investigadores da área da saúde.Programa Doutoral em Informátic

    A Review Paper Based on Content-Based Image Retrieval

    Get PDF
    The quantity and complexity of digital image data is rapidly expanding. The user does not meet the demands of traditional information recovery technology, so an efficient system for content-based image collection must be developed. The image recovery from material becomes a source of reliable and rapid recovery. In this paper, characteristics such as color correlogram, texture, form, edge density are compared. For understanding and acquiring much better knowledge on a specific subject, literature surveys are most relevant. In this paper, we discuss some technical aspects of the current image recovery systems based on content

    Learning effective color features for content based image retrieval in dermatology

    Get PDF
    We investigate the extraction of effective color features for a content-based image retrieval (CBIR) application in dermatology. Effectiveness is measured by the rate of correct retrieval of images from four color classes of skin lesions. We employ and compare two different methods to learn favorable feature representations for this special application: limited rank matrix learning vector quantization (LiRaM LVQ) and a Large Margin Nearest Neighbor (LMNN) approach. Both methods use labeled training data and provide a discriminant linear transformation of the original features, potentially to a lower dimensional space. The extracted color features are used to retrieve images from a database by a k-nearest neighbor search. We perform a comparison of retrieval rates achieved with extracted and original features for eight different standard color spaces. We achieved significant improvements in every examined color space. The increase of the mean correct retrieval rate lies between 10% and 27% in the range of k=1–25 retrieved images, and the correct retrieval rate lies between 84% and 64%. We present explicit combinations of RGB and CIE-Lab color features corresponding to healthy and lesion skin. LiRaM LVQ and the computationally more expensive LMNN give comparable results for large values of the method parameter κ of LMNN (κ≥25) while LiRaM LVQ outperforms LMNN for smaller values of κ. We conclude that feature extraction by LiRaM LVQ leads to considerable improvement in color-based retrieval of dermatologic images

    Composed Image Retrieval using Contrastive Learning and Task-oriented CLIP-based Features

    Full text link
    Given a query composed of a reference image and a relative caption, the Composed Image Retrieval goal is to retrieve images visually similar to the reference one that integrates the modifications expressed by the caption. Given that recent research has demonstrated the efficacy of large-scale vision and language pre-trained (VLP) models in various tasks, we rely on features from the OpenAI CLIP model to tackle the considered task. We initially perform a task-oriented fine-tuning of both CLIP encoders using the element-wise sum of visual and textual features. Then, in the second stage, we train a Combiner network that learns to combine the image-text features integrating the bimodal information and providing combined features used to perform the retrieval. We use contrastive learning in both stages of training. Starting from the bare CLIP features as a baseline, experimental results show that the task-oriented fine-tuning and the carefully crafted Combiner network are highly effective and outperform more complex state-of-the-art approaches on FashionIQ and CIRR, two popular and challenging datasets for composed image retrieval. Code and pre-trained models are available at https://github.com/ABaldrati/CLIP4CirComment: Accepted in ACM Transactions on Multimedia Computing Communications and Applications (TOMM

    Multimedia Retrieval

    Get PDF
    corecore