35,386 research outputs found

    Parameter Selection and Uncertainty Measurement for Variable Precision Probabilistic Rough Set

    Get PDF
    In this paper, we consider the problem of parameter selection and uncertainty measurement for a variable precision probabilistic rough set. Firstly, within the framework of the variable precision probabilistic rough set model, the relative discernibility of a variable precision rough set in probabilistic approximation space is discussed, and the conditions that make precision parameters α discernible in a variable precision probabilistic rough set are put forward. Concurrently, we consider the lack of predictability of precision parameters in a variable precision probabilistic rough set, and we propose a systematic threshold selection method based on relative discernibility of sets, using the concept of relative discernibility in probabilistic approximation space. Furthermore, a numerical example is applied to test the validity of the proposed method in this paper. Secondly, we discuss the problem of uncertainty measurement for the variable precision probabilistic rough set. The concept of classical fuzzy entropy is introduced into probabilistic approximation space, and the uncertain information that comes from approximation space and the approximated objects is fully considered. Then, an axiomatic approach is established for uncertainty measurement in a variable precision probabilistic rough set, and several related interesting properties are also discussed. Thirdly, we study the attribute reduction for the variable precision probabilistic rough set. The definition of reduction and its characteristic theorems are given for the variable precision probabilistic rough set. The main contribution of this paper is twofold. One is to propose a method of parameter selection for a variable precision probabilistic rough set. Another is to present a new approach to measurement uncertainty and the method of attribute reduction for a variable precision probabilistic rough set

    A Noise-tolerant Approach to Fuzzy-Rough Feature Selection

    Get PDF
    In rough set based feature selection, the goal is to omit attributes (features) from decision systems such that objects in different decision classes can still be discerned. A popular way to evaluate attribute subsets with respect to this criterion is based on the notion of dependency degree. In the standard approach, attributes are expected to be qualitative; in the presence of quantitative attributes, the methodology can be generalized using fuzzy rough sets, to handle gradual (in)discernibility between attribute values more naturally. However, both the extended approach, as well as its crisp counterpart, exhibit a strong sensitivity to noise: a change in a single object may significantly influence the outcome of the reduction procedure. Therefore, in this paper, we consider a more flexible methodology based on the recently introduced Vaguely Quantified Rough Set (VQRS) model. The method can handle both crisp (discrete-valued) and fuzzy (real-valued) data, and encapsulates the existing noise-tolerant data reduction approach using Variable Precision Rough Sets (VPRS), as well as the traditional rough set model, as special cases

    A comprehensive study of implicator-conjunctor based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis

    Get PDF
    © 2014 Elsevier B.V. Both rough and fuzzy set theories offer interesting tools for dealing with imperfect data: while the former allows us to work with uncertain and incomplete information, the latter provides a formal setting for vague concepts. The two theories are highly compatible, and since the late 1980s many researchers have studied their hybridization. In this paper, we critically evaluate most relevant fuzzy rough set models proposed in the literature. To this end, we establish a formally correct and unified mathematical framework for them. Both implicator-conjunctor-based definitions and noise-tolerant models are studied. We evaluate these models on two different fronts: firstly, we discuss which properties of the original rough set model can be maintained and secondly, we examine how robust they are against both class and attribute noise. By highlighting the benefits and drawbacks of the different fuzzy rough set models, this study appears a necessary first step to propose and develop new models in future research.Lynn D’eer has been supported by the Ghent University Special Research Fund, Chris Cornelis was partially supported by the Spanish Ministry of Science and Technology under the project TIN2011-28488 and the Andalusian Research Plans P11-TIC-7765 and P10-TIC-6858, and by project PYR-2014-8 of the Genil Program of CEI BioTic GRANADA and Lluis Godo has been partially supported by the Spanish MINECO project EdeTRI TIN2012-39348-C02-01Peer Reviewe

    Improving circuit miniaturization and its efficiency using Rough Set Theory

    Full text link
    High-speed, accuracy, meticulousness and quick response are notion of the vital necessities for modern digital world. An efficient electronic circuit unswervingly affects the maneuver of the whole system. Different tools are required to unravel different types of engineering tribulations. Improving the efficiency, accuracy and low power consumption in an electronic circuit is always been a bottle neck problem. So the need of circuit miniaturization is always there. It saves a lot of time and power that is wasted in switching of gates, the wiring-crises is reduced, cross-sectional area of chip is reduced, the number of transistors that can implemented in chip is multiplied many folds. Therefore to trounce with this problem we have proposed an Artificial intelligence (AI) based approach that make use of Rough Set Theory for its implementation. Theory of rough set has been proposed by Z Pawlak in the year 1982. Rough set theory is a new mathematical tool which deals with uncertainty and vagueness. Decisions can be generated using rough set theory by reducing the unwanted and superfluous data. We have condensed the number of gates without upsetting the productivity of the given circuit. This paper proposes an approach with the help of rough set theory which basically lessens the number of gates in the circuit, based on decision rules.Comment: The International Conference on Machine Intelligence Research and Advancement,ICMIRA-201
    • …
    corecore