5,486 research outputs found

    Intertemporal Choice of Fuzzy Soft Sets

    Get PDF
    This paper first merges two noteworthy aspects of choice. On the one hand, soft sets and fuzzy soft sets are popular models that have been largely applied to decision making problems, such as real estate valuation, medical diagnosis (glaucoma, prostate cancer, etc.), data mining, or international trade. They provide crisp or fuzzy parameterized descriptions of the universe of alternatives. On the other hand, in many decisions, costs and benefits occur at different points in time. This brings about intertemporal choices, which may involve an indefinitely large number of periods. However, the literature does not provide a model, let alone a solution, to the intertemporal problem when the alternatives are described by (fuzzy) parameterizations. In this paper, we propose a novel soft set inspired model that applies to the intertemporal framework, hence it fills an important gap in the development of fuzzy soft set theory. An algorithm allows the selection of the optimal option in intertemporal choice problems with an infinite time horizon. We illustrate its application with a numerical example involving alternative portfolios of projects that a public administration may undertake. This allows us to establish a pioneering intertemporal model of choice in the framework of extended fuzzy set theorie

    READUP BUILDUP. Thync - instant α-readings

    Get PDF

    Non-convex clustering using expectation maximization algorithm with rough set initialization

    Get PDF
    An integration of a minimal spanning tree (MST) based graph-theoretic technique and expectation maximization (EM) algorithm with rough set initialization is described for non-convex clustering. EM provides the statistical model of the data and handles the associated uncertainties. Rough set theory helps in faster convergence and avoidance of the local minima problem, thereby enhancing the performance of EM. MST helps in determining non-convex clusters. Since it is applied on Gaussians rather than the original data points, time required is very low. These features are demonstrated on real life datasets. Comparison with related methods is made in terms of a cluster quality measure and computation time

    General self-motivation and strategy identification : Case studies based on Sokoban and Pac-Man

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, we use empowerment, a recently introduced biologically inspired measure, to allow an AI player to assign utility values to potential future states within a previously unencountered game without requiring explicit specification of goal states. We further introduce strategic affinity, a method of grouping action sequences together to form "strategies," by examining the overlap in the sets of potential future states following each such action sequence. We also demonstrate an information-theoretic method of predicting future utility. Combining these methods, we extend empowerment to soft-horizon empowerment which enables the player to select a repertoire of action sequences that aim to maintain anticipated utility. We show how this method provides a proto-heuristic for nonterminal states prior to specifying concrete game goals, and propose it as a principled candidate model for "intuitive" strategy selection, in line with other recent work on "self-motivated agent behavior." We demonstrate that the technique, despite being generically defined independently of scenario, performs quite well in relatively disparate scenarios, such as a Sokoban-inspired box-pushing scenario and in a Pac-Man-inspired predator game, suggesting novel and principle-based candidate routes toward more general game-playing algorithms.Peer reviewedFinal Accepted Versio

    Fuzzy-Rough Attribute Reduction with Application to Web Categorization

    Get PDF
    Due to the explosive growth of electronically stored information, automatic methods must be developed to aid users in maintaining and using this abundance of informa-tion eectively. In particular, the sheer volume of redundancy present must be dealt with, leaving only the information-rich data to be processed. This paper presents a novel approach, based on an integrated use of fuzzy and rough set theories, to greatly reduce this data redundancy. Formal concepts of fuzzy-rough attribute re-duction are introduced and illustrated with a simple example. The work is applied to the problem of web categorization, considerably reducing dimensionality with minimal loss of information. Experimental results show that fuzzy-rough reduction is more powerful than the conventional rough set-based approach. Classiers that use a lower dimensional set of attributes which are retained by fuzzy-rough reduc-tion outperform those that employ more attributes returned by the existing crisp rough reduction method.

    Fuzzy-rough set and fuzzy ID3 decision approaches to knowledge discovery in datasets

    Get PDF
    Fuzzy rough sets are the generalization of traditional rough sets to deal with both fuzziness and vagueness in data. The existing researches on fuzzy rough sets mainly concentrate on the construction of approximation operators. Less effort has been put on the knowledge discovery in datasets with fuzzy rough sets. This paper mainly focuses on knowledge discovery in datasets with fuzzy rough sets. After analyzing the previous works on knowledge discovery with fuzzy rough sets, we introduce formal concepts of attribute reduction with fuzzy rough sets and completely study the structure of attribute reduction

    Explaining and Refining Decision-Theoretic Choices

    Get PDF
    As the need to make complex choices among competing alternative actions is ubiquitous, the reasoning machinery of many intelligent systems will include an explicit model for making choices. Decision analysis is particularly useful for modelling such choices, and its potential use in intelligent systems motivates the construction of facilities for automatically explaining decision-theoretic choices and for helping users to incrementally refine the knowledge underlying them. The proposed thesis addresses the problem of providing such facilities. Specifically, we propose the construction of a domain-independent facility called UTIL, for explaining and refining a restricted but widely applicable decision-theoretic model called the additive multi-attribute value model. In this proposal we motivate the task, address the related issues, and present preliminary solutions in the context of examples from the domain of intelligent process control
    corecore