26,513 research outputs found

    Attribute Recognition by Joint Recurrent Learning of Context and Correlation

    Get PDF
    Recognising semantic pedestrian attributes in surveillance images is a challenging task for computer vision, particularly when the imaging quality is poor with complex background clutter and uncontrolled viewing conditions, and the number of labelled training data is small. In this work, we formulate a Joint Recurrent Learning (JRL) model for exploring attribute context and correlation in order to improve attribute recognition given small sized training data with poor quality images. The JRL model learns jointly pedestrian attribute correlations in a pedestrian image and in particular their sequential ordering dependencies (latent high-order correlation) in an end-to-end encoder/decoder recurrent network. We demonstrate the performance advantage and robustness of the JRL model over a wide range of state-of-the-art deep models for pedestrian attribute recognition, multi-label image classification, and multi-person image annotation on two largest pedestrian attribute benchmarks PETA and RAP.Comment: Accepted by ICCV 201

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes
    • …
    corecore