55 research outputs found

    Broadcast encryption with dealership

    Get PDF
    In this paper, we introduce a new cryptographic primitive called broadcast encryption with dealership. This notion, which has never been discussed in the cryptography literature, is applicable to many realistic broadcast services, for example subscription-based television service. Specifically, the new primitive enables a dealer to bulk buy the access to some products (e.g., TV channels) from the broadcaster, and hence, it will enable the dealer to resell the contents to the subscribers with a cheaper rate. Therefore, this creates business opportunity model for the dealer. We highlight the security consideration in such a scenario and capture the security requirements in the security model. Subsequently, we present a concrete scheme, which is proven secure under the decisional bilinear Diffie-Hellman exponent and the Diffie-Hellman exponent assumptions

    Privacy Preserving Enforcement of Sensitive Policies in Outsourced and Distributed Environments

    Get PDF
    The enforcement of sensitive policies in untrusted environments is still an open challenge for policy-based systems. On the one hand, taking any appropriate security decision requires access to these policies. On the other hand, if such access is allowed in an untrusted environment then confidential information might be leaked by the policies. The key challenge is how to enforce sensitive policies and protect content in untrusted environments. In the context of untrusted environments, we mainly distinguish between outsourced and distributed environments. The most attractive paradigms concerning outsourced and distributed environments are cloud computing and opportunistic networks, respectively. In this dissertation, we present the design, technical and implementation details of our proposed policy-based access control mechanisms for untrusted environments. First of all, we provide full confidentiality of access policies in outsourced environments, where service providers do not learn private information about policies. We support expressive policies and take into account contextual information. The system entities do not share any encryption keys. For complex user management, we offer the full-fledged Role-Based Access Control (RBAC) policies. In opportunistic networks, we protect content by specifying expressive policies. In our proposed approach, brokers match subscriptions against policies associated with content without compromising privacy of subscribers. As a result, unauthorised brokers neither gain access to content nor learn policies and authorised nodes gain access only if they satisfy policies specified by publishers. Our proposed system provides scalable key management in which loosely-coupled publishers and subscribers communicate without any prior contact. Finally, we have developed a prototype of the system that runs on real smartphones and analysed its performance.Comment: Ph.D. Dissertation. http://eprints-phd.biblio.unitn.it/1124

    Embedded document security using sticky policies and identity based encryption

    Get PDF
    Data sharing domains have expanded over several, both trusted and insecure environments. At the same time, the data security boundaries have shrunk from internal network perimeters down to a single identity and a piece of information. Since new EU GDPR regulations, the personally identifiable information sharing requires data governance in favour of a data subject. Existing enterprise grade IRM solutions fail to follow open standards and lack of data sharing frameworks that could efficiently integrate with existing identity management and authentication infrastructures. IRM services that stood against cloud demands often offer a very limited access control functionality allowing an individual to store a document online giving a read or read-write permission to other individual identified by email address. Unfortunately, such limited information sharing controls are often introduced as the only safeguards in large enterprises, healthcare institutions and other organizations that should provide the highest possible personal data protection standards. The IRM suffers from a systems architecture vulnerability where IRM application installed on a semi-trusted client truly only guarantees none or full access enforcement. Since no single authority is contacted to verify each committed change the adversary having an advantage of possessing data-encrypting and key-encrypting keys could change and re-encrypt the amended content despite that read only access has been granted. Finally, the two evaluated IRM products, have either the algorithm security lifecycle (ASL) relatively short to protect the shared data, or the solution construct highly restrained secure key-encrypting key distribution and exposes a symmetric data-encrypting key over the network. Presented here sticky policy with identity-based encryption (SPIBE) solution was designed for secure cloud data sharing. SPIBE challenges are to deliver simple standardized construct that would easily integrate with popular OOXML-like document formats and provide simple access rights enforcement over protected content. It leverages a sticky policy construct using XACML access policy language to express access conditions across different cloud data sharing boundaries. XACML is a cloud-ready standard designed for a global multi-jurisdictional use. Unlike other raw ABAC implementations, the XACML offers a standardised schema and authorisation protocols hence it simplifies interoperability. The IBE is a cryptographic scheme protecting the shared document using an identified policy as an asymmetric key-encrypting a symmetric data-encrypting key. Unlike ciphertext-policy attribute-based access control (CP-ABE), the SPIBE policy contains not only access preferences but global document identifier and unique version identifier what makes each policy uniquely identifiable in relation to the protected document. In IBE scheme the public key-encrypting key is known and could be shared between the parties although the data-encrypting key is never sent over the network. Finally, the SPIBE as a framework should have a potential to protect data in case of new threats where ASL of a used cryptographic primitive is too short, when algorithm should be replaced with a new updated cryptographic primitive. The IBE like a cryptographic protocol could be implemented with different cryptographic primitives. The identity-based encryption over isogenous pairing groups (IBE-IPG) is a post-quantum ready construct that leverages the initial IBE Boneh-Franklin (IBE-BF) approach. Existing IBE implementations could be updated to IBE-IPG without major system amendments. Finally, by applying the one document versioning blockchain-like construct could verify changes authenticity and approve only legitimate document updates, where other IRM solutions fail to operate delivering the one single authority for non-repudiation and authenticity assurance

    Proceedings of the Workshop on web applications and secure hardware (WASH 2013).

    Get PDF
    Web browsers are becoming the platform of choice for applications that need to work across a wide range of different devices, including mobile phones, tablets, PCs, TVs and in-car systems. However, for web applications which require a higher level of assurance, such as online banking, mobile payment, and media distribution (DRM), there are significant security and privacy challenges. A potential solution to some of these problems can be found in the use of secure hardware – such as TPMs, ARM TrustZone, virtualisation and secure elements – but these are rarely accessible to web applications or used by web browsers. The First Workshop on Web Applications and Secure Hardware (WASH'13) focused on how secure hardware could be used to enhance web applications and web browsers to provide functionality such as credential storage, attestation and secure execution. This included challenges in compatibility (supporting the same security features despite different user hardware) as well as multi-device scenarios where a device with hardware mechanisms can help provide assurance for systems without. Also of interest were proposals to enhance existing security mechanisms and protocols, security models where the browser is not trusted by the web application, and enhancements to the browser itself

    Multimedia security and privacy protection in the internet of things: research developments and challenges

    Get PDF
    With the rapid growth of the internet of things (IoT), huge amounts of multimedia data are being generated from and/or exchanged through various IoT devices, systems and applications. The security and privacy of multimedia data have, however, emerged as key challenges that have the potential to impact the successful deployment of IoT devices in some data-sensitive applications. In this paper, we conduct a comprehensive survey on multimedia data security and privacy protection in the IoT. First, we classify multimedia data into different types and security levels according to application areas. Then, we analyse and discuss the existing multimedia data protection schemes in the IoT, including traditional techniques (e.g., cryptography and watermarking) and emerging technologies (e.g., blockchain and federated learning). Based on the detailed analysis on the research development of IoT-related multimedia security and privacy protection, we point out some open challenges and provide future research directions, aiming to advance the study in the relevant fields and assist researchers in gaining a deeper understanding of the state of the art on multimedia data protection in the IoT
    • …
    corecore