176 research outputs found

    Backwards theory supports modelling via invariant manifolds for non-autonomous dynamical systems

    Full text link
    This article establishes the foundation for a new theory of invariant/integral manifolds for non-autonomous dynamical systems. Current rigorous support for dimensional reduction modelling of slow-fast systems is limited by the rare events in stochastic systems that may cause escape, and limited in many applications by the unbounded nature of PDE operators. To circumvent such limitations, we initiate developing a backward theory of invariant/integral manifolds that complements extant forward theory. Here, for deterministic non-autonomous ODE systems, we construct a conjugacy with a normal form system to establish the existence, emergence and exact construction of center manifolds in a finite domain for systems `arbitrarily close' to that specified. A benefit is that the constructed invariant manifolds are known to be exact for systems `close' to the one specified, and hence the only error is in determining how close over the domain of interest for any specific application. Built on the base developed here, planned future research should develop a theory for stochastic and/or PDE systems that is useful in a wide range of modelling applications

    Large dispersion, averaging and attractors: three 1D paradigms

    Full text link
    The effect of rapid oscillations, related to large dispersion terms, on the dynamics of dissipative evolution equations is studied for the model examples of the 1D complex Ginzburg-Landau and the Kuramoto-Sivashinsky equations. Three different scenarios of this effect are demonstrated. According to the first scenario, the dissipation mechanism is not affected and the diameter of the global attractor remains uniformly bounded with respect to the very large dispersion coefficient. However, the limit equation, as the dispersion parameter tends to infinity, becomes a gradient system. Therefore, adding the large dispersion term actually suppresses the non-trivial dynamics. According to the second scenario, neither the dissipation mechanism, nor the dynamics are essentially affected by the large dispersion and the limit dynamics remains complicated (chaotic). Finally, it is demonstrated in the third scenario that the dissipation mechanism is completely destroyed by the large dispersion, and that the diameter of the global attractor grows together with the growth of the dispersion parameter

    Aggregation-diffusion equations: dynamics, asymptotics, and singular limits

    Full text link
    Given a large ensemble of interacting particles, driven by nonlocal interactions and localized repulsion, the mean-field limit leads to a class of nonlocal, nonlinear partial differential equations known as aggregation-diffusion equations. Over the past fifteen years, aggregation-diffusion equations have become widespread in biological applications and have also attracted significant mathematical interest, due to their competing forces at different length scales. These competing forces lead to rich dynamics, including symmetrization, stabilization, and metastability, as well as sharp dichotomies separating well-posedness from finite time blowup. In the present work, we review known analytical results for aggregation-diffusion equations and consider singular limits of these equations, including the slow diffusion limit, which leads to the constrained aggregation equation, as well as localized aggregation and vanishing diffusion limits, which lead to metastability behavior. We also review the range of numerical methods available for simulating solutions, with special attention devoted to recent advances in deterministic particle methods. We close by applying such a method -- the blob method for diffusion -- to showcase key properties of the dynamics of aggregation-diffusion equations and related singular limits

    Beginner's guide to Aggregation-Diffusion Equations

    Full text link
    The aim of this survey is to serve as an introduction to the different techniques available in the broad field of Aggregation-Diffusion Equations. We aim to provide historical context, key literature, and main ideas in the field. We start by discussing the modelling and famous particular cases: Heat equation, Fokker-Plank, Porous medium, Keller-Segel, Chapman-Rubinstein-Schatzman, Newtonian vortex, Caffarelli-V\'azquez, McKean-Vlasov, Kuramoto, and one-layer neural networks. In Section 4 we present the well-posedness frameworks given as PDEs in Sobolev spaces, and gradient-flow in Wasserstein. Then we discuss the asymptotic behaviour in time, for which we need to understand minimisers of a free energy. We then present some numerical methods which have been developed. We conclude the paper mentioning some related problems
    corecore