652 research outputs found

    An observer-based attitude and nutation control and flexible dynamic analysis for the NASA Magnetospheric Multiscale Mission

    Get PDF
    Current research with the NASA Goddard Space Flight Center (GSFC) involves the dynamic modeling and control of the NASA Magnetospheric Multiscale (MMS) Mission, a. Solar-Terrestrial Probe mission to study Earth\u27s magnetosphere. Four observer-based attitude and nutrition controllers are designed and evaluated to determine the most effective feedback control system as it applies to MMS. Also, a dynamic analysis of each of the four identical satellites\u27 two Axial Double Probe (ADP) booms is performed to provide an understanding of flexible boom dynamics. The Finite Element method is used in evaluating boom modes of vibration for confirmation of NASA GSFC theoretical analysis and use in flexible model development. The dynamic transient and modal extraction technique are investigated for vibration analysis of constrained and unconstrained bodies. A fully flexible boom and rigid spacecraft model is also developed for vibrational analysis under steady-state rotation and thruster loads. Results indicate, however, the need for future research in numerical analysis of propagating systems through finite element methods and in the stability of the observer-based control system. Linear and nonlinear observers are developed through simulations to estimate satellite attitude and angular body rates without the use of rate sensors. Control systems are then developed assuming perfect state measurements. Euler angles are used to describe satellite attitude in this research. Finally, linear and nonlinear (Sliding Mode Control) techniques are implemented in conjunction with the nonlinear observers to complete the observer-based control system. The results of this research show that, of the methods analyzed, both the Extended Kalman Filter and Sliding Mode Observer implemented with Sliding Mode Control yield the most satisfactory performance. These observer-based control systems both meet NASA design requirements while reducing thruster control effort and reducing the effects of measurement noise and spacecraft uncertainties/disturbances. More simulations, however, are needed to verify performance of the proposed observer-based control system over all possible ranges of operation

    Fault-tolerant feature-based estimation of space debris motion and inertial properties

    Get PDF
    The exponential increase of the needs of people in the modern society and the contextual development of the space technologies have led to a significant use of the lower Earth’s orbits for placing artificial satellites. The current overpopulation of these orbits also increased the interest of the major space agencies in technologies for the removal of at least the biggest spacecraft that have reached their end-life or have failed their mission. One of the key functionalities required in a mission for removing a non-cooperative spacecraft is the assessment of its kinematics and inertial properties. In a few cases, this information can be approximated by ground observations. However, a re-assessment after the rendezvous phase is of critical importance for refining the capture strategies preventing accidents. The CADET program (CApture and DE-orbiting Technologies), funded by Regione Piemonte and led by Aviospace s.r.l., involved Politecnico di Torino in the research for solutions to the above issue. This dissertation proposes methods and algorithms for estimating the location of the center of mass, the angular rate, and the moments of inertia of a passive object. These methods require that the chaser spacecraft be capable of tracking several features of the target through passive vision sensors. Because of harsh lighting conditions in the space environment, feature-based methods should tolerate temporary failures in detecting features. The principal works on this topic do not consider this important aspect, making it a characteristic trait of the proposed methods. Compared to typical v treatments of the estimation problem, the proposed techniques do not depend solely on state observers. However, methods for recovering missing information, like compressive sampling techniques, are used for preprocessing input data to support the efficient usage of state observers. Simulation results showed accuracy properties that are comparable to those of the best-known methods already proposed in the literature. The developed algorithms were tested in the laboratory staged by Aviospace s.r.l., whose name is CADETLab. The results of the experimental tests suggested the practical applicability of such algorithms for supporting a real active removal mission

    Motion Coordination of Aerial Vehicles

    Get PDF
    The coordinated motion control of multiple vehicles has emerged as a field of major interest in the control community. This thesis addresses two topics related to the control of a group of aerial vehicles: the output feedback attitude synchronization of rigid bodies and the formation control of Unmanned Aerial Vehicles (UAVs) capable of Vertical Take-Off and Landing (VTOL). The information flow between members of the team is assumed fixed and undirected. The first part of this thesis is devoted to the attitude synchronization of a group of spacecraft. In this context, we propose control schemes for the synchronization of a group of spacecraft to a predefined attitude trajectory without angular velocity measurements. We also propose some velocity-free consensus-seeking schemes allowing a group of spacecraft to align their attitudes, without reference trajectory specification. The second part of this thesis is devoted to the control of a group of VTOL-UAVs in the Special Euclidian group SE(3), i.e., position and orientation. In this context, we propose a few position coordination schemes without linear-velocity measurements. We also propose some solutions to the same problem in the presence of communication time-delays between aircraft. To solve the above mentioned problems, several new technical tools have been introduced in this thesis to overcome the deficiencies of the existing techniques in this field
    • …
    corecore