2,396 research outputs found

    Vision technology/algorithms for space robotics applications

    Get PDF
    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed

    The emergence of French statistics. How mathematics entered the world of statistics in France during the 1920s

    Get PDF
    This paper concerns the emergence of modern mathematical statistics in France after the First World War. Emile Borel's achievements are presented, and especially his creation of two institutions where mathematical statistics was developed: the {\it Statistical Institute of Paris University}, (ISUP) in 1922 and above all the {\it Henri Poincar\'e Institute} (IHP) in 1928. At the IHP, a new journal {\it Annales de l'Institut Henri Poincar\'e} was created in 1931. We discuss the first papers in that journal dealing with mathematical statistics

    Blinded assessment of treatment effects utilizing information about the randomization block length

    Get PDF
    It is essential for the integrity of double-blind clinical trials that during the study course the individual treatment allocations of the patients as well as the treatment effect remain unknown to any involved person. Recently, methods have been proposed for which it was claimed that they would allow reliable estimation of the treatment effect based on blinded data by using information about the block length of the randomization procedure. If this would hold true, it would be difficult to preserve blindness without taking further measures. The suggested procedures apply to continuous data. We investigate the properties of these methods thoroughly by repeated simulations per scenario. Furthermore, a method for blinded treatment effect estimation in case of binary data is proposed, and blinded tests for treatment group differences are developed both for continuous and binary data. We report results of comprehensive simulation studies that investigate the features of these procedures. It is shown that for sample sizes and treatment effects which are typical in clinical trials, no reliable inference can be made on the treatment group difference which is due to the bias and imprecision of the blinded estimates

    Pose Detection and Control of Unmanned Underwater Vehicles (UUVs) Utilizing an Optical Detector Array

    Get PDF
    As part of the research for development of a leader-follower formation between unmanned underwater vehicles (UUVs), this study presents an optical feedback system for UUV navigation via an optical detector array. Capabilities of pose detection and control in a static-dynamic system (e.g. UUV navigation into a docking station) and a dynamic-dynamic system (e.g. UUV to UUV leader-follower system) are investigated. In both systems, a single light source is utilized as a guiding beacon for a tracker/follower UUV. The UUV uses an optical array consisting of photodiodes to receive the light field emitted from the light source. For UUV navigation applications, accurate pose estimation is essential. In order to evaluate the feasibility of underwater distance detection, the effective communication range between two platforms, i.e. light source and optical detector, and the optimum spectral range that allowed maximum light transmission are calculated. Based on the light attenuation in underwater, the geometry and dimensions of an optical detector array are determined, and the boundary conditions for the developed pose detection algorithms along with the error sources in the experiments are identified. As a test bed to determine optical array dimensions and size, a simulator, i.e. numerical software, is developed, where planar and curved array geometries of varying number of elements are analytically compared and evaluated. Results show that the curved optical detector array is able to distinguish 5 degree- of-freedom (DOF) motion (translation in x, y, z-axes and pitch and yaw rotations) with respect to a single light source. Analytical pose detection and control algorithms are developed for both static-dynamic and dynamic-dynamic systems. Results show that a 5 x 5 curved detector array with the implementation of SMC is reasonably sufficient for practical UUV positioning applications. The capabilities of an optical detector array to determine the pose of a UUV in 3-DOF (x, y and z-axes) are experimentally tested. An experimental platform consisting of a 5 x 5 photodiode array mounted on a hemispherical surface is used to sample the light field emitted from a single light source. Pose detection algorithms are developed to detect pose for steady-state and dynamic cases. Monte Carlo analysis is conducted to assess the pose estimation uncertainty under varying environmental and hardware conditions such as water turbidity, temperature variations in water and electrically-based noise. Monte Carlo analysis results show that the pose uncertainties (within 95% confidence interval) associated with x, y and z-axes are 0.78 m, 0.67 m and 0.56 m, respectively. Experimental results demonstrate that x, y and z-axes pose estimates are accurate to within 0.5 m, 0.2 m and 0.2 m, respectively

    Spectral geometry as a probe of quantum spacetime

    Full text link
    Employing standard results from spectral geometry, we provide strong evidence that in the classical limit the ground state of three-dimensional causal dynamical triangulations is de Sitter spacetime. This result is obtained by measuring the expectation value of the spectral dimension on the ensemble of geometries defined by these models, and comparing its large scale behaviour to that of a sphere (Euclidean de Sitter). From the same measurement we are also able to confirm the phenomenon of dynamical dimensional reduction observed in this and other approaches to quantum gravity -- the first time this has been done for three-dimensional causal dynamical triangulations. In this case, the value for the short-scale limit of the spectral dimension that we find is approximately 2. We comment on the relevance of these results for the comparison to asymptotic safety and Horava-Lifshitz gravity, among other approaches to quantum gravity.Comment: 25 pages, 6 figures. Version 2: references to figures added, acknowledgment added
    • …
    corecore