886 research outputs found

    Gradient-like observer design on the Special Euclidean group SE(3) with system outputs on the real projective space

    Full text link
    A nonlinear observer on the Special Euclidean group SE(3)\mathrm{SE(3)} for full pose estimation, that takes the system outputs on the real projective space directly as inputs, is proposed. The observer derivation is based on a recent advanced theory on nonlinear observer design. A key advantage with respect to existing pose observers on SE(3)\mathrm{SE(3)} is that we can now incorporate in a unique observer different types of measurements such as vectorial measurements of known inertial vectors and position measurements of known feature points. The proposed observer is extended allowing for the compensation of unknown constant bias present in the velocity measurements. Rigorous stability analyses are equally provided. Excellent performance of the proposed observers are shown by means of simulations

    Rigid Body Attitude Estimation: An Overview and Comparative Study

    Get PDF
    The attitude estimation of rigid body systems has attracted the attention of many researchers over the years. The development of efficient estimation algorithms that can accurately estimate the orientation of a rigid body is a crucial step towards a reliable implementation of control schemes for underwater and flying vehicles. The primary focus of this thesis consists in investigating various attitude estimation techniques and their applications. Two major classes are discussed. The first class consists of the earliest static attitude determination techniques relying solely on a set of body vector measurements of known vectors in the inertial frame. The second class consists of dynamic attitude estimation and filtering techniques, relying on body vector measurements as well other measurements, and using the dynamical equations of the system under consideration. Various attitude estimation algorithms, including the latest nonlinear attitude observers, are presented and discussed, providing a survey that covers the evolution and structural differences of these estimation methods. Simulation results have been carried out for a selected number of such attitude estimators. Their performance in the presence of noisy measurements, as well as their advantages and disadvantages are discussed

    Accurate 3D maps from depth images and motion sensors via nonlinear Kalman filtering

    Full text link
    This paper investigates the use of depth images as localisation sensors for 3D map building. The localisation information is derived from the 3D data thanks to the ICP (Iterative Closest Point) algorithm. The covariance of the ICP, and thus of the localization error, is analysed, and described by a Fisher Information Matrix. It is advocated this error can be much reduced if the data is fused with measurements from other motion sensors, or even with prior knowledge on the motion. The data fusion is performed by a recently introduced specific extended Kalman filter, the so-called Invariant EKF, and is directly based on the estimated covariance of the ICP. The resulting filter is very natural, and is proved to possess strong properties. Experiments with a Kinect sensor and a three-axis gyroscope prove clear improvement in the accuracy of the localization, and thus in the accuracy of the built 3D map.Comment: Submitted to IROS 2012. 8 page
    • …
    corecore