85 research outputs found

    Multimodal Content Analysis for Effective Advertisements on YouTube

    Full text link
    The rapid advances in e-commerce and Web 2.0 technologies have greatly increased the impact of commercial advertisements on the general public. As a key enabling technology, a multitude of recommender systems exists which analyzes user features and browsing patterns to recommend appealing advertisements to users. In this work, we seek to study the characteristics or attributes that characterize an effective advertisement and recommend a useful set of features to aid the designing and production processes of commercial advertisements. We analyze the temporal patterns from multimedia content of advertisement videos including auditory, visual and textual components, and study their individual roles and synergies in the success of an advertisement. The objective of this work is then to measure the effectiveness of an advertisement, and to recommend a useful set of features to advertisement designers to make it more successful and approachable to users. Our proposed framework employs the signal processing technique of cross modality feature learning where data streams from different components are employed to train separate neural network models and are then fused together to learn a shared representation. Subsequently, a neural network model trained on this joint feature embedding representation is utilized as a classifier to predict advertisement effectiveness. We validate our approach using subjective ratings from a dedicated user study, the sentiment strength of online viewer comments, and a viewer opinion metric of the ratio of the Likes and Views received by each advertisement from an online platform.Comment: 11 pages, 5 figures, ICDM 201

    Facial Expression Analysis under Partial Occlusion: A Survey

    Full text link
    Automatic machine-based Facial Expression Analysis (FEA) has made substantial progress in the past few decades driven by its importance for applications in psychology, security, health, entertainment and human computer interaction. The vast majority of completed FEA studies are based on non-occluded faces collected in a controlled laboratory environment. Automatic expression recognition tolerant to partial occlusion remains less understood, particularly in real-world scenarios. In recent years, efforts investigating techniques to handle partial occlusion for FEA have seen an increase. The context is right for a comprehensive perspective of these developments and the state of the art from this perspective. This survey provides such a comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems. It outlines existing challenges in overcoming partial occlusion and discusses possible opportunities in advancing the technology. To the best of our knowledge, it is the first FEA survey dedicated to occlusion and aimed at promoting better informed and benchmarked future work.Comment: Authors pre-print of the article accepted for publication in ACM Computing Surveys (accepted on 02-Nov-2017

    Tiny ML in Microcontroller to Classify EEG Signal into Three States

    Get PDF
    This thesis investigates how to implement an own-built neural network for electroencephalography signals classification on an STM32L475VG microcontroller unit. The original dataset is analyzed and processed to better understand the brain signals. There is a comparison between three machine learning algorithms (linear support vector machine, extreme gradient boosting, and deep neural network) in three testing paradigms: specific-subject, all-subject, and adaptable to select the most appropriate approach for deploying on the microcontroller. The implementation procedure with detailed notation is presented, and the inference is also performed to feasible observation. Finally, possible improvement solutions are proposed within a clear demonstration.This thesis investigates how to implement an own-built neural network for electroencephalography signals classification on an STM32L475VG microcontroller unit. The original dataset is analyzed and processed to better understand the brain signals. There is a comparison between three machine learning algorithms (linear support vector machine, extreme gradient boosting, and deep neural network) in three testing paradigms: specific-subject, all-subject, and adaptable to select the most appropriate approach for deploying on the microcontroller. The implementation procedure with detailed notation is presented, and the inference is also performed to feasible observation. Finally, possible improvement solutions are proposed within a clear demonstration

    Detection of Driver Drowsiness and Distraction Using Computer Vision and Machine Learning Approaches

    Get PDF
    Drowsiness and distracted driving are leading factor in most car crashes and near-crashes. This research study explores and investigates the applications of both conventional computer vision and deep learning approaches for the detection of drowsiness and distraction in drivers. In the first part of this MPhil research study conventional computer vision approaches was studied to develop a robust drowsiness and distraction system based on yawning detection, head pose detection and eye blinking detection. These algorithms were implemented by using existing human crafted features. Experiments were performed for the detection and classification with small image datasets to evaluate and measure the performance of system. It was observed that the use of human crafted features together with a robust classifier such as SVM gives better performance in comparison to previous approaches. Though, the results were satisfactorily, there are many drawbacks and challenges associated with conventional computer vision approaches, such as definition and extraction of human crafted features, thus making these conventional algorithms to be subjective in nature and less adaptive in practice. In contrast, deep learning approaches automates the feature selection process and can be trained to learn the most discriminative features without any input from human. In the second half of this research study, the use of deep learning approaches for the detection of distracted driving was investigated. It was observed that one of the advantages of the applied methodology and technique for distraction detection includes and illustrates the contribution of CNN enhancement to a better pattern recognition accuracy and its ability to learn features from various regions of a human body simultaneously. The comparison of the performance of four convolutional deep net architectures (AlexNet, ResNet, MobileNet and NASNet) was carried out, investigated triplet training and explored the impact of combining a support vector classifier (SVC) with a trained deep net. The images used in our experiments with the deep nets are from the State Farm Distracted Driver Detection dataset hosted on Kaggle, each of which captures the entire body of a driver. The best results were obtained with the NASNet trained using triplet loss and combined with an SVC. It was observed that one of the advantages of deep learning approaches are their ability to learn discriminative features from various regions of a human body simultaneously. The ability has enabled deep learning approaches to reach accuracy at human level.

    Cognitive Biology: Dealing with Information from Bacteria to Minds

    Get PDF
    Providing a new conceptual scaffold for further research in biology and cognition, this text introduces the new field of cognitive biology, treating developing organisms as information processors which use cognition to control and modify their environments

    Emotion-aware voice interfaces based on speech signal processing

    Get PDF
    Voice interfaces (VIs) will become increasingly widespread in current daily lives as AI techniques progress. VIs can be incorporated into smart devices like smartphones, as well as integrated into autos, home automation systems, computer operating systems, and home appliances, among other things. Current speech interfaces, however, are unaware of users’ emotional states and hence cannot support real communication. To overcome these limitations, it is necessary to implement emotional awareness in future VIs. This thesis focuses on how speech signal processing (SSP) and speech emotion recognition (SER) can enable VIs to gain emotional awareness. Following an explanation of what emotion is and how neural networks are implemented, this thesis presents the results of several user studies and surveys. Emotions are complicated, and they are typically characterized using category and dimensional models. They can be expressed verbally or nonverbally. Although existing voice interfaces are unaware of users’ emotional states and cannot support natural conversations, it is possible to perceive users’ emotions by speech based on SSP in future VIs. One section of this thesis, based on SSP, investigates mental restorative effects on humans and their measures from speech signals. SSP is less intrusive and more accessible than traditional measures such as attention scales or response tests, and it can provide a reliable assessment for attention and mental restoration. SSP can be implemented into future VIs and utilized in future HCI user research. The thesis then moves on to present a novel attention neural network based on sparse correlation features. The detection accuracy of emotions in the continuous speech was demonstrated in a user study utilizing recordings from a real classroom. In this section, a promising result will be shown. In SER research, it is unknown if existing emotion detection methods detect acted emotions or the genuine emotion of the speaker. Another section of this thesis is concerned with humans’ ability to act on their emotions. In a user study, participants were instructed to imitate five fundamental emotions. The results revealed that they struggled with this task; nevertheless, certain emotions were easier to replicate than others. A further study concern is how VIs should respond to users’ emotions if SER techniques are implemented in VIs and can recognize users’ emotions. The thesis includes research on ways for dealing with the emotions of users. In a user study, users were instructed to make sad, angry, and terrified VI avatars happy and were asked if they would like to be treated the same way if the situation were reversed. According to the results, the majority of participants tended to respond to these unpleasant emotions with neutral emotion, but there is a difference among genders in emotion selection. For a human-centered design approach, it is important to understand what the users’ preferences for future VIs are. In three distinct cultures, a questionnaire-based survey on users’ attitudes and preferences for emotion-aware VIs was conducted. It was discovered that there are almost no gender differences. Cluster analysis found that there are three fundamental user types that exist in all cultures: Enthusiasts, Pragmatists, and Sceptics. As a result, future VI development should consider diverse sorts of consumers. In conclusion, future VIs systems should be designed for various sorts of users as well as be able to detect the users’ disguised or actual emotions using SER and SSP technologies. Furthermore, many other applications, such as restorative effects assessments, can be included in the VIs system
    corecore