488 research outputs found

    Deep attentive video summarization with distribution consistency learning

    Get PDF
    This article studies supervised video summarization by formulating it into a sequence-to-sequence learning framework, in which the input and output are sequences of original video frames and their predicted importance scores, respectively. Two critical issues are addressed in this article: short-term contextual attention insufficiency and distribution inconsistency. The former lies in the insufficiency of capturing the short-term contextual attention information within the video sequence itself since the existing approaches focus a lot on the long-term encoder-decoder attention. The latter refers to the distributions of predicted importance score sequence and the ground-truth sequence is inconsistent, which may lead to a suboptimal solution. To better mitigate the first issue, we incorporate a self-attention mechanism in the encoder to highlight the important keyframes in a short-term context. The proposed approach alongside the encoder-decoder attention constitutes our deep attentive models for video summarization. For the second one, we propose a distribution consistency learning method by employing a simple yet effective regularization loss term, which seeks a consistent distribution for the two sequences. Our final approach is dubbed as Attentive and Distribution consistent video Summarization (ADSum). Extensive experiments on benchmark data sets demonstrate the superiority of the proposed ADSum approach against state-of-the-art approaches

    Convolutional Hierarchical Attention Network for Query-Focused Video Summarization

    Full text link
    Previous approaches for video summarization mainly concentrate on finding the most diverse and representative visual contents as video summary without considering the user's preference. This paper addresses the task of query-focused video summarization, which takes user's query and a long video as inputs and aims to generate a query-focused video summary. In this paper, we consider the task as a problem of computing similarity between video shots and query. To this end, we propose a method, named Convolutional Hierarchical Attention Network (CHAN), which consists of two parts: feature encoding network and query-relevance computing module. In the encoding network, we employ a convolutional network with local self-attention mechanism and query-aware global attention mechanism to learns visual information of each shot. The encoded features will be sent to query-relevance computing module to generate queryfocused video summary. Extensive experiments on the benchmark dataset demonstrate the competitive performance and show the effectiveness of our approach.Comment: Accepted by AAAI 2020 Conferenc

    Egocentric Vision-based Future Vehicle Localization for Intelligent Driving Assistance Systems

    Full text link
    Predicting the future location of vehicles is essential for safety-critical applications such as advanced driver assistance systems (ADAS) and autonomous driving. This paper introduces a novel approach to simultaneously predict both the location and scale of target vehicles in the first-person (egocentric) view of an ego-vehicle. We present a multi-stream recurrent neural network (RNN) encoder-decoder model that separately captures both object location and scale and pixel-level observations for future vehicle localization. We show that incorporating dense optical flow improves prediction results significantly since it captures information about motion as well as appearance change. We also find that explicitly modeling future motion of the ego-vehicle improves the prediction accuracy, which could be especially beneficial in intelligent and automated vehicles that have motion planning capability. To evaluate the performance of our approach, we present a new dataset of first-person videos collected from a variety of scenarios at road intersections, which are particularly challenging moments for prediction because vehicle trajectories are diverse and dynamic.Comment: To appear on ICRA 201

    Dilated Temporal Relational Adversarial Network for Generic Video Summarization

    Get PDF
    The large amount of videos popping up every day, make it more and more critical that key information within videos can be extracted and understood in a very short time. Video summarization, the task of finding the smallest subset of frames, which still conveys the whole story of a given video, is thus of great significance to improve efficiency of video understanding. We propose a novel Dilated Temporal Relational Generative Adversarial Network (DTR-GAN) to achieve frame-level video summarization. Given a video, it selects the set of key frames, which contain the most meaningful and compact information. Specifically, DTR-GAN learns a dilated temporal relational generator and a discriminator with three-player loss in an adversarial manner. A new dilated temporal relation (DTR) unit is introduced to enhance temporal representation capturing. The generator uses this unit to effectively exploit global multi-scale temporal context to select key frames and to complement the commonly used Bi-LSTM. To ensure that summaries capture enough key video representation from a global perspective rather than a trivial randomly shorten sequence, we present a discriminator that learns to enforce both the information completeness and compactness of summaries via a three-player loss. The loss includes the generated summary loss, the random summary loss, and the real summary (ground-truth) loss, which play important roles for better regularizing the learned model to obtain useful summaries. Comprehensive experiments on three public datasets show the effectiveness of the proposed approach

    Unsupervised Video Summarization via Attention-Driven Adversarial Learning

    Get PDF
    This paper presents a new video summarization approach that integrates an attention mechanism to identify the signi cant parts of the video, and is trained unsupervisingly via generative adversarial learning. Starting from the SUM-GAN model, we rst develop an improved version of it (called SUM-GAN-sl) that has a signi cantly reduced number of learned parameters, performs incremental training of the model's components, and applies a stepwise label-based strategy for updating the adversarial part. Subsequently, we introduce an attention mechanism to SUM-GAN-sl in two ways: i) by integrating an attention layer within the variational auto-encoder (VAE) of the architecture (SUM-GAN-VAAE), and ii) by replacing the VAE with a deterministic attention auto-encoder (SUM-GAN-AAE). Experimental evaluation on two datasets (SumMe and TVSum) documents the contribution of the attention auto-encoder to faster and more stable training of the model, resulting in a signi cant performance improvement with respect to the original model and demonstrating the competitiveness of the proposed SUM-GAN-AAE against the state of the art

    AC-SUM-GAN: Connecting Actor-Critic and Generative Adversarial Networks for Unsupervised Video Summarization

    Get PDF
    This paper presents a new method for unsupervised video summarization. The proposed architecture embeds an Actor-Critic model into a Generative Adversarial Network and formulates the selection of important video fragments (that will be used to form the summary) as a sequence generation task. The Actor and the Critic take part in a game that incrementally leads to the selection of the video key-fragments, and their choices at each step of the game result in a set of rewards from the Discriminator. The designed training workflow allows the Actor and Critic to discover a space of actions and automatically learn a policy for key-fragment selection. Moreover, the introduced criterion for choosing the best model after the training ends, enables the automatic selection of proper values for parameters of the training process that are not learned from the data (such as the regularization factor σ). Experimental evaluation on two benchmark datasets (SumMe and TVSum) demonstrates that the proposed AC-SUM-GAN model performs consistently well and gives SoA results in comparison to unsupervised methods, that are also competitive with respect to supervised methods
    • …
    corecore