86 research outputs found

    Learning Second-Order Attentive Context for Efficient Correspondence Pruning

    Full text link
    Correspondence pruning aims to search consistent correspondences (inliers) from a set of putative correspondences. It is challenging because of the disorganized spatial distribution of numerous outliers, especially when putative correspondences are largely dominated by outliers. It's more challenging to ensure effectiveness while maintaining efficiency. In this paper, we propose an effective and efficient method for correspondence pruning. Inspired by the success of attentive context in correspondence problems, we first extend the attentive context to the first-order attentive context and then introduce the idea of attention in attention (ANA) to model second-order attentive context for correspondence pruning. Compared with first-order attention that focuses on feature-consistent context, second-order attention dedicates to attention weights itself and provides an additional source to encode consistent context from the attention map. For efficiency, we derive two approximate formulations for the naive implementation of second-order attention to optimize the cubic complexity to linear complexity, such that second-order attention can be used with negligible computational overheads. We further implement our formulations in a second-order context layer and then incorporate the layer in an ANA block. Extensive experiments demonstrate that our method is effective and efficient in pruning outliers, especially in high-outlier-ratio cases. Compared with the state-of-the-art correspondence pruning approach LMCNet, our method runs 14 times faster while maintaining a competitive accuracy.Comment: 9 pages, 8 figures; Accepted to AAAI 2023 (Oral

    GECCO: Geometrically-Conditioned Point Diffusion Models

    Full text link
    Diffusion models generating images conditionally on text, such as Dall-E 2 and Stable Diffusion, have recently made a splash far beyond the computer vision community. Here, we tackle the related problem of generating point clouds, both unconditionally, and conditionally with images. For the latter, we introduce a novel geometrically-motivated conditioning scheme based on projecting sparse image features into the point cloud and attaching them to each individual point, at every step in the denoising process. This approach improves geometric consistency and yields greater fidelity than current methods relying on unstructured, global latent codes. Additionally, we show how to apply recent continuous-time diffusion schemes. Our method performs on par or above the state of art on conditional and unconditional experiments on synthetic data, while being faster, lighter, and delivering tractable likelihoods. We show it can also scale to diverse indoors scenes

    Fully Differentiable RANSAC

    Full text link
    We propose the fully differentiable ∇\nabla-RANSAC.It predicts the inlier probabilities of the input data points, exploits the predictions in a guided sampler, and estimates the model parameters (e.g., fundamental matrix) and its quality while propagating the gradients through the entire procedure. The random sampler in ∇\nabla-RANSAC is based on a clever re-parametrization strategy, i.e.\ the Gumbel Softmax sampler, that allows propagating the gradients directly into the subsequent differentiable minimal solver. The model quality function marginalizes over the scores from all models estimated within ∇\nabla-RANSAC to guide the network learning accurate and useful probabilities.∇\nabla-RANSAC is the first to unlock the end-to-end training of geometric estimation pipelines, containing feature detection, matching and RANSAC-like randomized robust estimation. As a proof of its potential, we train ∇\nabla-RANSAC together with LoFTR, i.e. a recent detector-free feature matcher, to find reliable correspondences in an end-to-end manner. We test ∇\nabla-RANSAC on a number of real-world datasets on fundamental and essential matrix estimation. It is superior to the state-of-the-art in terms of accuracy while being among the fastest methods. The code and trained models will be made public

    The Catalog Problem:Deep Learning Methods for Transforming Sets into Sequences of Clusters

    Get PDF
    The titular Catalog Problem refers to predicting a varying number of ordered clusters from sets of any cardinality. This task arises in many diverse areas, ranging from medical triage, through multi-channel signal analysis for petroleum exploration to product catalog structure prediction. This thesis focuses on the latter, which exemplifies a number of challenges inherent to ordered clustering. These include learning variable cluster constraints, exhibiting relational reasoning and managing combinatorial complexity. All of which present unique challenges for neural networks, combining elements of set representation, neural clustering and permutation learning.In order to approach the Catalog Problem, a curated dataset of over ten thousand real-world product catalogs consisting of more than one million product offers is provided. Additionally, a library for generating simpler, synthetic catalog structures is presented. These and other datasets form the foundation of the included work, allowing for a quantitative comparison of the proposed methods’ ability to address the underlying challenge. In particular, synthetic datasets enable the assessment of the models’ capacity to learn higher order compositional and structural rules.Two novel neural methods are proposed to tackle the Catalog Problem, a set encoding module designed to enhance the network’s ability to condition the prediction on the entirety of the input set, and a larger architecture for inferring an input- dependent number of diverse, ordered partitional clusters with an added cardinality prediction module. Both result in an improved performance on the presented datasets, with the latter being the only neural method fulfilling all requirements inherent to addressing the Catalog Problem
    • …
    corecore