1,106 research outputs found

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions

    Robotic Faces: Exploring Dynamical Patterns of Social Interaction between Humans and Robots

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics, 2015The purpose of this dissertation is two-fold: 1) to develop an empirically-based design for an interactive robotic face, and 2) to understand how dynamical aspects of social interaction may be leveraged to design better interactive technologies and/or further our understanding of social cognition. Understanding the role that dynamics plays in social cognition is a challenging problem. This is particularly true in studying cognition via human-robot interaction, which entails both the natural social cognition of the human and the “artificial intelligence” of the robot. Clearly, humans who are interacting with other humans (or even other mammals such as dogs) are cognizant of the social nature of the interaction – their behavior in those cases differs from that when interacting with inanimate objects such as tools. Humans (and many other animals) have some awareness of “social”, some sense of other agents. However, it is not clear how or why. Social interaction patterns vary across culture, context, and individual characteristics of the human interactor. These factors are subsumed into the larger interaction system, influencing the unfolding of the system over time (i.e. the dynamics). The overarching question is whether we can figure out how to utilize factors that influence the dynamics of the social interaction in order to imbue our interactive technologies (robots, clinical AI, decision support systems, etc.) with some "awareness of social", and potentially create more natural interaction paradigms for those technologies. In this work, we explore the above questions across a range of studies, including lab-based experiments, field observations, and placing autonomous, interactive robotic faces in public spaces. We also discuss future work, how this research relates to making sense of what a robot "sees", creating data-driven models of robot social behavior, and development of robotic face personalities

    The distracted robot: what happens when artificial agents behave like us

    Get PDF
    In everyday life, we are frequently exposed to different smart technologies. From our smartphones to avatars in computer games, and soon perhaps humanoid robots, we are surrounded by artificial agents created to interact with us. Already during the design phase of an artificial agent, engineers often endow it with functions aimed to promote the interaction and engagement with it, ranging from its \u201ccommunicative\u201d abilities to the movements it produces. Still, whether an artificial agent that can behave like a human could boost the spontaneity and naturalness of interaction is still an open question. Even during the interaction with conspecifics, humans rely partially on motion cues when they need to infer the mental states underpinning behavior. Similar processes may be activated during the interaction with embodied artificial agents, such as humanoid robots. At the same time, a humanoid robot that can faithfully reproduce human-like behavior may undermine the interaction, causing a shift in attribution: from being endearing to being uncanny. Furthermore, it is still not clear whether individual biases and prior knowledge related to artificial agents can override perceptual evidence of human-like traits. A relatively new area of research emerged in the context of investigating individuals\u2019 reactions towards robots, widely referred to as Human-Robot Interaction (HRI). HRI is a multidisciplinary community that comprises psychologists, neuroscientists, philosophers as well as roboticists, and engineers. However, HRI research has been often based on explicit measures (i.e. self-report questionnaires, a-posteriori interviews), while more implicit social cognitive processes that are elicited during the interaction with artificial agents took second place behind more qualitative and anecdotal results. The present work aims to demonstrate the usefulness of combining the systematic approach of cognitive neuroscience with HRI paradigms to further investigate social cognition processes evoked by artificial agents. Thus, this thesis aimed at exploring human sensitivity to anthropomorphic characteristics of a humanoid robot's (i.e. iCub robot) behavior, based on motion cues, under different conditions of prior knowledge. To meet this aim, we manipulated the human-likeness of the behaviors displayed by the robot and the explicitness of instructions provided to the participants, in both screen-based and real-time interaction scenarios. Furthermore, we explored some of the individual differences that affect general attitudes towards robots, and the attribution of human-likeness consequently

    Humanoid-based protocols to study social cognition

    Get PDF
    Social cognition is broadly defined as the way humans understand and process their interactions with other humans. In recent years, humans have become more and more used to interact with non-human agents, such as technological artifacts. Although these interactions have been restricted to human-controlled artifacts, they will soon include interactions with embodied and autonomous mechanical agents, i.e., robots. This challenge has motivated an area of research related to the investigation of human reactions towards robots, widely referred to as Human-Robot Interaction (HRI). Classical HRI protocols often rely on explicit measures, e.g., subjective reports. Therefore, they cannot address the quantification of the crucial implicit social cognitive processes that are evoked during an interaction. This thesis aims to develop a link between cognitive neuroscience and human-robot interaction (HRI) to study social cognition. This approach overcomes methodological constraints of both fields, allowing to trigger and capture the mechanisms of real-life social interactions while ensuring high experimental control. The present PhD work demonstrates this through the systematic study of the effect of online eye contact on gaze-mediated orienting of attention. The study presented in Publication I aims to adapt the gaze-cueing paradigm from cognitive science to an objective neuroscientific HRI protocol. Furthermore, it investigates whether the gaze-mediated orienting of attention is sensitive to the establishment of eye contact. The study replicates classic screen-based findings of attentional orienting mediated by gaze both at behavioral and neural levels, highlighting the feasibility and the scientific value of adding neuroscientific methods to HRI protocols. The aim of the study presented in Publication II is to examine whether and how real-time eye contact affects the dual-component model of joint attention orienting. To this end, cue validity and stimulus-to-onset asynchrony are also manipulated. The results show an interactive effect of strategic (cue validity) and social (eye contact) top-down components on the botton-up reflexive component of gaze-mediated orienting of attention. The study presented in Publication III aims to examine the subjective engagement and attribution of human likeness towards the robot depending on established eye contact or not during a joint attention task. Subjective reports show that eye contact increases human likeness attribution and feelings of engagement with the robot compared to a no-eye contact condition. The aim of the study presented in Publication IV is to investigate whether eye contact established by a humanoid robot affects objective measures of engagement (i.e. joint attention and fixation durations), and subjective feelings of engagement with the robot during a joint attention task. Results show that eye contact modulates attentional engagement, with longer fixations at the robot’s face and cueing effect when the robot establishes eye contact. In contrast, subjective reports show that the feeling of being engaged with the robot in an HRI protocol is not modulated by real-time eye contact. This study further supports the necessity for adding objective methods to HRI. Overall, this PhD work shows that embodied artificial agents can advance the theoretical knowledge of social cognitive mechanisms by serving as sophisticated interactive stimuli of high ecological validity and excellent experimental control. Moreover, humanoid-based protocols grounded in cognitive science can advance the HRI community by informing about the exact cognitive mechanisms that are present during HRI

    Towards an Indexical Model of Situated Language Comprehension for Cognitive Agents in Physical Worlds

    Full text link
    We propose a computational model of situated language comprehension based on the Indexical Hypothesis that generates meaning representations by translating amodal linguistic symbols to modal representations of beliefs, knowledge, and experience external to the linguistic system. This Indexical Model incorporates multiple information sources, including perceptions, domain knowledge, and short-term and long-term experiences during comprehension. We show that exploiting diverse information sources can alleviate ambiguities that arise from contextual use of underspecific referring expressions and unexpressed argument alternations of verbs. The model is being used to support linguistic interactions in Rosie, an agent implemented in Soar that learns from instruction.Comment: Advances in Cognitive Systems 3 (2014
    corecore