9,777 research outputs found

    The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety.

    Get PDF
    Although many studies have examined the neural basis of empathy, relatively little is known about how empathic processes are affected by different attentional conditions. Thus, we examined whether instructions to empathize might amplify responses in empathy-related regions and whether cognitive load would diminish the involvement of these regions. Thirty-two participants completed a functional magnetic resonance imaging session assessing empathic responses to individuals experiencing happy, sad, and anxious events. Stimuli were presented under three conditions: watching naturally, actively empathizing, and under cognitive load. Across analyses, we found evidence for a core set of neural regions that support empathic processes (dorsomedial prefrontal cortex, DMPFC; medial prefrontal cortex, MPFC; temporoparietal junction, TPJ; amygdala; ventral anterior insula, AI; and septal area, SA). Two key regions-the ventral AI and SA-were consistently active across all attentional conditions, suggesting that they are automatically engaged during empathy. In addition, watching vs. empathizing with targets was not markedly different and instead led to similar subjective and neural responses to others' emotional experiences. In contrast, cognitive load reduced the subjective experience of empathy and diminished neural responses in several regions related to empathy and social cognition (DMPFC, MPFC, TPJ, and amygdala). The results reveal how attention impacts empathic processes and provides insight into how empathy may unfold in everyday interactions

    Observing another in pain facilitates vicarious experiences and modulates somatosensory experiences

    Get PDF
    Objective: This study investigated whether individuals reporting vicarious pain in daily life (e.g., the self-reported vicarious pain group) display vicarious experiences during an experimental paradigm, and also show an improved detection of somatosensory stimuli while observing another in pain. Furthermore, this study investigated the stability of these phenomena. Finally, this study explored the putative modulating role of dispositional empathy and hypervigilance for pain. Methods: Vicarious pain responders (i.e., reporting vicarious pain in daily life; N = 16) and controls (N = 19) were selected from a large sample, and viewed videos depicting pain-related (hands being pricked) and non-pain related scenes, whilst occasionally experiencing vibrotactile stimuli themselves on the left, right or both hands. Participants reported the location at which they felt a somatosensory stimulus. We calculated the number of vicarious errors (i.e., the number of trials in which an illusionary sensation was reported while observing pain-related scenes) and detection accuracy. Thirty-three participants (94.29%) took part in the same experiment 5 months later to investigate the temporal stability of the outcomes. Results: The vicarious pain group reported more vicarious errors compared with controls and this effect proved to be stable over time. Detection was facilitated while observing pain-related scenes compared with non-pain related scenes. Observers' characteristics, i.e., dispositional empathy and hypervigilance for pain, did not modulate the effects. Conclusion: Observing pain facilitates the detection of tactile stimuli, both in vicarious pain responders and controls. Interestingly, vicarious pain responders reported more vicarious errors during the experimental paradigm compared to controls and this effect remained stable over time

    "Feeling" others' painful actions: the sensorimotor integration of pain and action information.

    Get PDF
    Sensorimotor regions of the brain have been implicated in simulation processes such as action understanding and empathy, but their functional role in these processes remains unspecified. We used functional magnetic resonance imaging (fMRI) to demonstrate that postcentral sensorimotor cortex integrates action and object information to derive the sensory outcomes of observed hand-object interactions. When subjects viewed others' hands grasping or withdrawing from objects that were either painful or nonpainful, distinct sensorimotor subregions emerged as showing preferential responses to different aspects of the stimuli: object information (noxious vs. innocuous), action information (grasps vs. withdrawals), and painful action outcomes (painful grasps vs. all other conditions). Activation in the latter region correlated with subjects' ratings of how painful each object would be to touch and their previous experience with the object. Viewing others' painful grasps also biased behavioral responses to actual tactile stimulation, a novel effect not seen for auditory control stimuli. Somatosensory cortices, including primary somatosensory areas 1/3b and 2 and parietal area PF, may therefore subserve somatomotor simulation processes by integrating action and object information to anticipate the sensory consequences of observed hand-object interactions

    Can neuroscientific studies be of personal value?

    Get PDF
    This essay reflects on the ability of neuroscientific data to be of personal value and to enrich our lives by offering insight into our capacities for self management and choice. The theory of cognitive dualism proposed by Roger Scruton seeks to preserve rationality and allow for freedom of will, but he appears reluctant to engage with the data accruing in neural studies. I contrast this approach with a Thomistic hylomorphic approach to the philosophy of mind that is founded on participation in being. It offers the potential to draw on neurobiological knowledge for insights into rationality, motivation, and eudaimonia. The role of neural development in eudaimonia is considered and the benefits of a Thomistic hylomorphism founded on participation in esse are summarized

    Sensorimotor Alpha Activity is Modulated in Response to the Observation of Pain in Others

    Get PDF
    The perception–action account of empathy states that observation of another person's state automatically activates a similar state in the observer. It is still unclear in what way ongoing sensorimotor alpha oscillations are involved in this process. Although they have been repeatedly implicated in (biological) action observation and understanding communicative gestures, less is known about their role in vicarious pain observation. Their role is understood as providing a graded inhibition through functional inhibition, thereby streamlining information flow through the cortex. Although alpha oscillations have been shown to have at least visual and sensorimotor origins, only the latter are expected to be involved in the empathetic response. Here, we used magnetoencephalography, allowing us to spatially distinguish and localize oscillatory components using beamformer source reconstruction. Subjects observed realistic pictures of limbs in painful and no-pain (control) conditions. As predicted, time–frequency analysis indeed showed increased alpha suppression in the pain condition compared to the no-pain condition. Although both pain and no-pain conditions suppressed alpha- and beta-band activity at both posterior and central sensors, the pain condition suppressed alpha more only at central sensors. Source reconstruction localized these differences along the central sulcus. Our results could not be accounted for by differences in the evoked fields, suggesting a unique role of oscillatory activity in empathetic responses. We argue that alpha oscillations provide a unique measure of the underlying functional architecture of the brain, suggesting an automatic disinhibition of the sensorimotor cortices in response to the observation of pain in others

    Improving empathy in the care of pain patients

    Get PDF
    Empathy is associated with countless benefits in clinical interactions, yet it is not always optimal in health care providers. Social neuroscience offers a window onto the cerebral processes underlying the complex relationships between the multiple components of empathy, patient care, and the caregiver’s well-being. Neuroimaging studies have revealed patterns of empathyrelated neural responses that shed some light on the mechanisms that could partially explain the phenomena of empathy decline and pain underestimation in health care providers. Such information, complementary to behavioral research findings, may help develop new means of improving empathy in health care, as long as interpretation of neuroimaging data remains grounded. Additionally, research on empathy in this context has largely focused on how clinicians’ empathy may affect patient outcomes, but the relationship between empathy and well-being in health care providers is often neglected. The quest to optimize empathy in patient–clinician interactions must take into account the welfare of both members of this dyad

    Predictive social perception: Towards a unifying framework from action observation to person knowledge

    Get PDF
    Action observation is central to human social interaction. It allows people to derive what mental states drive others' behaviour and coordinate (and compete) effectively with them. Although previous accounts have conceptualised this ability in terms of bottom-up (motoric or conceptual) matching processes, more recent evidence suggests that such mechanisms cannot account for the complexity and uncertainty of the sensory input, even in cases where computations should be much simpler (i.e., low-level vision). It has therefore been argued that perception in general, and social perception in particular, is better described as a process of top–down hypothesis testing. In such models, any assumption about others—their goals, attitudes, and beliefs—is translated into predictions of expected sensory input and compared with incoming stimulation. This allows perception and action to be based on these expectations or—in case of a mismatch—for one's prior assumptions to be revised until they are better aligned with the individual's behaviour. This article will give a (selective) review of recent research from experimental psychology and (social) neuroscience that supports such views, discuss the relevant underlying models, and current gaps in research. In particular, it will argue that much headway can be made when current research on predictive social perception is integrated with classic findings from social psychology, which have already shown striking effects of prior knowledge on the processing of other people's behaviour
    corecore