39,868 research outputs found

    Enhancing Few-shot Image Classification with Cosine Transformer

    Full text link
    This paper addresses the few-shot image classification problem, where the classification task is performed on unlabeled query samples given a small amount of labeled support samples only. One major challenge of the few-shot learning problem is the large variety of object visual appearances that prevents the support samples to represent that object comprehensively. This might result in a significant difference between support and query samples, therefore undermining the performance of few-shot algorithms. In this paper, we tackle the problem by proposing Few-shot Cosine Transformer (FS-CT), where the relational map between supports and queries is effectively obtained for the few-shot tasks. The FS-CT consists of two parts, a learnable prototypical embedding network to obtain categorical representations from support samples with hard cases, and a transformer encoder to effectively achieve the relational map from two different support and query samples. We introduce Cosine Attention, a more robust and stable attention module that enhances the transformer module significantly and therefore improves FS-CT performance from 5% to over 20% in accuracy compared to the default scaled dot-product mechanism. Our method performs competitive results in mini-ImageNet, CUB-200, and CIFAR-FS on 1-shot learning and 5-shot learning tasks across backbones and few-shot configurations. We also developed a custom few-shot dataset for Yoga pose recognition to demonstrate the potential of our algorithm for practical application. Our FS-CT with cosine attention is a lightweight, simple few-shot algorithm that can be applied for a wide range of applications, such as healthcare, medical, and security surveillance. The official implementation code of our Few-shot Cosine Transformer is available at https://github.com/vinuni-vishc/Few-Shot-Cosine-Transforme

    Graph Few-shot Learning via Knowledge Transfer

    Full text link
    Towards the challenging problem of semi-supervised node classification, there have been extensive studies. As a frontier, Graph Neural Networks (GNNs) have aroused great interest recently, which update the representation of each node by aggregating information of its neighbors. However, most GNNs have shallow layers with a limited receptive field and may not achieve satisfactory performance especially when the number of labeled nodes is quite small. To address this challenge, we innovatively propose a graph few-shot learning (GFL) algorithm that incorporates prior knowledge learned from auxiliary graphs to improve classification accuracy on the target graph. Specifically, a transferable metric space characterized by a node embedding and a graph-specific prototype embedding function is shared between auxiliary graphs and the target, facilitating the transfer of structural knowledge. Extensive experiments and ablation studies on four real-world graph datasets demonstrate the effectiveness of our proposed model.Comment: Full paper (with Appendix) of AAAI 202

    Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks

    Full text link
    We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate "few-shot" models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.Comment: To be published in NAACL 201

    One-Shot Relational Learning for Knowledge Graphs

    Full text link
    Knowledge graphs (KGs) are the key components of various natural language processing applications. To further expand KGs' coverage, previous studies on knowledge graph completion usually require a large number of training instances for each relation. However, we observe that long-tail relations are actually more common in KGs and those newly added relations often do not have many known triples for training. In this work, we aim at predicting new facts under a challenging setting where only one training instance is available. We propose a one-shot relational learning framework, which utilizes the knowledge extracted by embedding models and learns a matching metric by considering both the learned embeddings and one-hop graph structures. Empirically, our model yields considerable performance improvements over existing embedding models, and also eliminates the need of re-training the embedding models when dealing with newly added relations.Comment: EMNLP 201
    • …
    corecore