1,152 research outputs found

    The contribution of fMRI in the study of visual categorization and expertise

    Get PDF
    No description supplie

    A Bayesian inference theory of attention: neuroscience and algorithms

    Get PDF
    The past four decades of research in visual neuroscience has generated a large and disparate body of literature on the role of attention [Itti et al., 2005]. Although several models have been developed to describe specific properties of attention, a theoretical framework that explains the computational role of attention and is consistent with all known effects is still needed. Recently, several authors have suggested that visual perception can be interpreted as a Bayesian inference process [Rao et al., 2002, Knill and Richards, 1996, Lee and Mumford, 2003]. Within this framework, topdown priors via cortical feedback help disambiguate noisy bottom-up sensory input signals. Building on earlier work by Rao [2005], we show that this Bayesian inference proposal can be extended to explain the role and predict the main properties of attention: namely to facilitate the recognition of objects in clutter. Visual recognition proceeds by estimating the posterior probabilities for objects and their locations within an image via an exchange of messages between ventral and parietal areas of the visual cortex. Within this framework, spatial attention is used to reduce the uncertainty in feature information; feature-based attention is used to reduce the uncertainty in location information. In conjunction, they are used to recognize objects in clutter. Here, we find that several key attentional phenomena such such as pop-out, multiplicative modulation and change in contrast response emerge naturally as a property of the network. We explain the idea in three stages. We start with developing a simplified model of attention in the brain identifying the primary areas involved and their interconnections. Secondly, we propose a Bayesian network where each node has direct neural correlates within our simplified biological model. Finally, we elucidate the properties of the resulting model, showing that the predictions are consistent with physiological and behavioral evidence

    A cortical model of object perception based on Bayesian networks and belief propagation.

    Get PDF
    Evidence suggests that high-level feedback plays an important role in visual perception by shaping the response in lower cortical levels (Sillito et al. 2006, Angelucci and Bullier 2003, Bullier 2001, Harrison et al. 2007). A notable example of this is reflected by the retinotopic activation of V1 and V2 neurons in response to illusory contours, such as Kanizsa figures, which has been reported in numerous studies (Maertens et al. 2008, Seghier and Vuilleumier 2006, Halgren et al. 2003, Lee 2003, Lee and Nguyen 2001). The illusory contour activity emerges first in lateral occipital cortex (LOC), then in V2 and finally in V1, strongly suggesting that the response is driven by feedback connections. Generative models and Bayesian belief propagation have been suggested to provide a theoretical framework that can account for feedback connectivity, explain psychophysical and physiological results, and map well onto the hierarchical distributed cortical connectivity (Friston and Kiebel 2009, Dayan et al. 1995, Knill and Richards 1996, Geisler and Kersten 2002, Yuille and Kersten 2006, Deneve 2008a, George and Hawkins 2009, Lee and Mumford 2003, Rao 2006, Litvak and Ullman 2009, Steimer et al. 2009). The present study explores the role of feedback in object perception, taking as a starting point the HMAX model, a biologically inspired hierarchical model of object recognition (Riesenhuber and Poggio 1999, Serre et al. 2007b), and extending it to include feedback connectivity. A Bayesian network that captures the structure and properties of the HMAX model is developed, replacing the classical deterministic view with a probabilistic interpretation. The proposed model approximates the selectivity and invariance operations of the HMAX model using the belief propagation algorithm. Hence, the model not only achieves successful feedforward recognition invariant to position and size, but is also able to reproduce modulatory effects of higher-level feedback, such as illusory contour completion, attention and mental imagery. Overall, the model provides a biophysiologically plausible interpretation, based on state-of-theart probabilistic approaches and supported by current experimental evidence, of the interaction between top-down global feedback and bottom-up local evidence in the context of hierarchical object perception

    Visual Cortex

    Get PDF
    The neurosciences have experienced tremendous and wonderful progress in many areas, and the spectrum encompassing the neurosciences is expansive. Suffice it to mention a few classical fields: electrophysiology, genetics, physics, computer sciences, and more recently, social and marketing neurosciences. Of course, this large growth resulted in the production of many books. Perhaps the visual system and the visual cortex were in the vanguard because most animals do not produce their own light and offer thus the invaluable advantage of allowing investigators to conduct experiments in full control of the stimulus. In addition, the fascinating evolution of scientific techniques, the immense productivity of recent research, and the ensuing literature make it virtually impossible to publish in a single volume all worthwhile work accomplished throughout the scientific world. The days when a single individual, as Diderot, could undertake the production of an encyclopedia are gone forever. Indeed most approaches to studying the nervous system are valid and neuroscientists produce an almost astronomical number of interesting data accompanied by extremely worthy hypotheses which in turn generate new ventures in search of brain functions. Yet, it is fully justified to make an encore and to publish a book dedicated to visual cortex and beyond. Many reasons validate a book assembling chapters written by active researchers. Each has the opportunity to bind together data and explore original ideas whose fate will not fall into the hands of uncompromising reviewers of traditional journals. This book focuses on the cerebral cortex with a large emphasis on vision. Yet it offers the reader diverse approaches employed to investigate the brain, for instance, computer simulation, cellular responses, or rivalry between various targets and goal directed actions. This volume thus covers a large spectrum of research even though it is impossible to include all topics in the extremely diverse field of neurosciences

    Attentive processing improves object recognition

    Get PDF
    The human visual system can recognize several thousand object categories irrespective of their position and size. This combination of selectivity and invariance is built up gradually across several stages of visual processing. However, the recognition of multiple objects in cluttered visual scenes presents a difficult problem for human as well as machine vision systems. The human visual system has evolved to perform two stages of visual processing: a pre-attentive parallel processing stage, in which the entire visual field is processed at once and a slow serial attentive processing stage, in which aregion of interest in an input image is selected for "specialized" analysis by an attentional spotlight. We argue that this strategy evolved to overcome the limitation of purely feed forward processing in the presence of clutter and crowding. Using a Bayesian model of attention along with a hierarchical model of feed forward recognition on a data set of real world images, we show that this two stage attentive processing can improve recognition in cluttered and crowded conditions

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    How active perception and attractor dynamics shape perceptual categorization: A computational model

    Get PDF
    We propose a computational model of perceptual categorization that fuses elements of grounded and sensorimotor theories of cognition with dynamic models of decision-making. We assume that category information consists in anticipated patterns of agent–environment interactions that can be elicited through overt or covert (simulated) eye movements, object manipulation, etc. This information is firstly encoded when category information is acquired, and then re-enacted during perceptual categorization. The perceptual categorization consists in a dynamic competition between attractors that encode the sensorimotor patterns typical of each category; action prediction success counts as ‘‘evidence’’ for a given category and contributes to falling into the corresponding attractor. The evidence accumulation process is guided by an active perception loop, and the active exploration of objects (e.g., visual exploration) aims at eliciting expected sensorimotor patterns that count as evidence for the object category. We present a computational model incorporating these elements and describing action prediction, active perception, and attractor dynamics as key elements of perceptual categorizations. We test the model in three simulated perceptual categorization tasks, and we discuss its relevance for grounded and sensorimotor theories of cognition.Peer reviewe
    corecore