14,637 research outputs found

    Variational Semi-supervised Aspect-term Sentiment Analysis via Transformer

    Full text link
    Aspect-term sentiment analysis (ATSA) is a longstanding challenge in natural language understanding. It requires fine-grained semantical reasoning about a target entity appeared in the text. As manual annotation over the aspects is laborious and time-consuming, the amount of labeled data is limited for supervised learning. This paper proposes a semi-supervised method for the ATSA problem by using the Variational Autoencoder based on Transformer (VAET), which models the latent distribution via variational inference. By disentangling the latent representation into the aspect-specific sentiment and the lexical context, our method induces the underlying sentiment prediction for the unlabeled data, which then benefits the ATSA classifier. Our method is classifier agnostic, i.e., the classifier is an independent module and various advanced supervised models can be integrated. Experimental results are obtained on the SemEval 2014 task 4 and show that our method is effective with four classical classifiers. The proposed method outperforms two general semisupervised methods and achieves state-of-the-art performance.Comment: Accepted by CoNLL 201

    GLoMo: Unsupervisedly Learned Relational Graphs as Transferable Representations

    Full text link
    Modern deep transfer learning approaches have mainly focused on learning generic feature vectors from one task that are transferable to other tasks, such as word embeddings in language and pretrained convolutional features in vision. However, these approaches usually transfer unary features and largely ignore more structured graphical representations. This work explores the possibility of learning generic latent relational graphs that capture dependencies between pairs of data units (e.g., words or pixels) from large-scale unlabeled data and transferring the graphs to downstream tasks. Our proposed transfer learning framework improves performance on various tasks including question answering, natural language inference, sentiment analysis, and image classification. We also show that the learned graphs are generic enough to be transferred to different embeddings on which the graphs have not been trained (including GloVe embeddings, ELMo embeddings, and task-specific RNN hidden unit), or embedding-free units such as image pixels

    Beneath the Tip of the Iceberg: Current Challenges and New Directions in Sentiment Analysis Research

    Full text link
    Sentiment analysis as a field has come a long way since it was first introduced as a task nearly 20 years ago. It has widespread commercial applications in various domains like marketing, risk management, market research, and politics, to name a few. Given its saturation in specific subtasks -- such as sentiment polarity classification -- and datasets, there is an underlying perception that this field has reached its maturity. In this article, we discuss this perception by pointing out the shortcomings and under-explored, yet key aspects of this field that are necessary to attain true sentiment understanding. We analyze the significant leaps responsible for its current relevance. Further, we attempt to chart a possible course for this field that covers many overlooked and unanswered questions.Comment: Published in the IEEE Transactions on Affective Computing (TAFFC

    Boost Phrase-level Polarity Labelling with Review-level Sentiment Classification

    Full text link
    Sentiment analysis on user reviews helps to keep track of user reactions towards products, and make advices to users about what to buy. State-of-the-art review-level sentiment classification techniques could give pretty good precisions of above 90%. However, current phrase-level sentiment analysis approaches might only give sentiment polarity labelling precisions of around 70%~80%, which is far from satisfaction and restricts its application in many practical tasks. In this paper, we focus on the problem of phrase-level sentiment polarity labelling and attempt to bridge the gap between phrase-level and review-level sentiment analysis. We investigate the inconsistency between the numerical star ratings and the sentiment orientation of textual user reviews. Although they have long been treated as identical, which serves as a basic assumption in previous work, we find that this assumption is not necessarily true. We further propose to leverage the results of review-level sentiment classification to boost the performance of phrase-level polarity labelling using a novel constrained convex optimization framework. Besides, the framework is capable of integrating various kinds of information sources and heuristics, while giving the global optimal solution due to its convexity. Experimental results on both English and Chinese reviews show that our framework achieves high labelling precisions of up to 89%, which is a significant improvement from current approaches

    User-Guided Aspect Classification for Domain-Specific Texts

    Full text link
    Aspect classification, identifying aspects of text segments, facilitates numerous applications, such as sentiment analysis and review summarization. To alleviate the human effort on annotating massive texts, in this paper, we study the problem of classifying aspects based on only a few user-provided seed words for pre-defined aspects. The major challenge lies in how to handle the noisy misc aspect, which is designed for texts without any pre-defined aspects. Even domain experts have difficulties to nominate seed words for the misc aspect, making existing seed-driven text classification methods not applicable. We propose a novel framework, ARYA, which enables mutual enhancements between pre-defined aspects and the misc aspect via iterative classifier training and seed updating. Specifically, it trains a classifier for pre-defined aspects and then leverages it to induce the supervision for the misc aspect. The prediction results of the misc aspect are later utilized to filter out noisy seed words for pre-defined aspects. Experiments in two domains demonstrate the superior performance of our proposed framework, as well as the necessity and importance of properly modeling the misc aspect

    DRTS Parsing with Structure-Aware Encoding and Decoding

    Full text link
    Discourse representation tree structure (DRTS) parsing is a novel semantic parsing task which has been concerned most recently. State-of-the-art performance can be achieved by a neural sequence-to-sequence model, treating the tree construction as an incremental sequence generation problem. Structural information such as input syntax and the intermediate skeleton of the partial output has been ignored in the model, which could be potentially useful for the DRTS parsing. In this work, we propose a structural-aware model at both the encoder and decoder phase to integrate the structural information, where graph attention network (GAT) is exploited for effectively modeling. Experimental results on a benchmark dataset show that our proposed model is effective and can obtain the best performance in the literature.Comment: ACL202

    Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding

    Full text link
    This paper presents a new semi-supervised framework with convolutional neural networks (CNNs) for text categorization. Unlike the previous approaches that rely on word embeddings, our method learns embeddings of small text regions from unlabeled data for integration into a supervised CNN. The proposed scheme for embedding learning is based on the idea of two-view semi-supervised learning, which is intended to be useful for the task of interest even though the training is done on unlabeled data. Our models achieve better results than previous approaches on sentiment classification and topic classification tasks.Comment: v1 has a different title, and the results there are obsolete. The current version is to appear in NIPS 201

    Left-Center-Right Separated Neural Network for Aspect-based Sentiment Analysis with Rotatory Attention

    Full text link
    Deep learning techniques have achieved success in aspect-based sentiment analysis in recent years. However, there are two important issues that still remain to be further studied, i.e., 1) how to efficiently represent the target especially when the target contains multiple words; 2) how to utilize the interaction between target and left/right contexts to capture the most important words in them. In this paper, we propose an approach, called left-center-right separated neural network with rotatory attention (LCR-Rot), to better address the two problems. Our approach has two characteristics: 1) it has three separated LSTMs, i.e., left, center and right LSTMs, corresponding to three parts of a review (left context, target phrase and right context); 2) it has a rotatory attention mechanism which models the relation between target and left/right contexts. The target2context attention is used to capture the most indicative sentiment words in left/right contexts. Subsequently, the context2target attention is used to capture the most important word in the target. This leads to a two-side representation of the target: left-aware target and right-aware target. We compare our approach on three benchmark datasets with ten related methods proposed recently. The results show that our approach significantly outperforms the state-of-the-art techniques

    Weakly-Supervised Neural Text Classification

    Full text link
    Deep neural networks are gaining increasing popularity for the classic text classification task, due to their strong expressive power and less requirement for feature engineering. Despite such attractiveness, neural text classification models suffer from the lack of training data in many real-world applications. Although many semi-supervised and weakly-supervised text classification models exist, they cannot be easily applied to deep neural models and meanwhile support limited supervision types. In this paper, we propose a weakly-supervised method that addresses the lack of training data in neural text classification. Our method consists of two modules: (1) a pseudo-document generator that leverages seed information to generate pseudo-labeled documents for model pre-training, and (2) a self-training module that bootstraps on real unlabeled data for model refinement. Our method has the flexibility to handle different types of weak supervision and can be easily integrated into existing deep neural models for text classification. We have performed extensive experiments on three real-world datasets from different domains. The results demonstrate that our proposed method achieves inspiring performance without requiring excessive training data and outperforms baseline methods significantly.Comment: CIKM 2018 Full Pape

    Deep Learning for Sentiment Analysis : A Survey

    Full text link
    Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.Comment: 34 pages, 9 figures, 2 table
    • …
    corecore