105,204 research outputs found

    Attention Allocation Aid for Visual Search

    Full text link
    This paper outlines the development and testing of a novel, feedback-enabled attention allocation aid (AAAD), which uses real-time physiological data to improve human performance in a realistic sequential visual search task. Indeed, by optimizing over search duration, the aid improves efficiency, while preserving decision accuracy, as the operator identifies and classifies targets within simulated aerial imagery. Specifically, using experimental eye-tracking data and measurements about target detectability across the human visual field, we develop functional models of detection accuracy as a function of search time, number of eye movements, scan path, and image clutter. These models are then used by the AAAD in conjunction with real time eye position data to make probabilistic estimations of attained search accuracy and to recommend that the observer either move on to the next image or continue exploring the present image. An experimental evaluation in a scenario motivated from human supervisory control in surveillance missions confirms the benefits of the AAAD.Comment: To be presented at the ACM CHI conference in Denver, Colorado in May 201

    Effects of Alzheimer’s Disease on Visual Target Detection: A “Peripheral Bias”

    Get PDF
    Visual exploration is an omnipresent activity in everyday life, and might represent an important determinant of visual attention deficits in patients with Alzheimer’s Disease (AD). The present study aimed at investigating visual search performance in AD patients, in particular target detection in the far periphery, in daily living scenes. Eighteen AD patients and 20 healthy controls participated in the study. They were asked to freely explore a hemispherical screen, covering ±90°, and to respond to targets presented at 10°, 30°, and 50° eccentricity, while their eye movements were recorded. Compared to healthy controls, AD patients recognized less targets appearing in the center. No difference was found in target detection in the periphery. This pattern was confirmed by the fixation distribution analysis. These results show a neglect for the central part of the visual field for AD patients and provide new insights by mean of a search task involving a larger field of view

    Pilots’ visual scan pattern and situation awareness in flight operations

    Get PDF
    Introduction: Situation awareness (SA) is considered an essential prerequisite for safe flying. If the impact of visual scanning patterns on a pilot’s situation awareness could be identified in flight operations, then eye-tracking tools could be integrated with flight simulators to improve training efficiency. Method: Participating in this research were 18 qualified, mission-ready fighter pilots. The equipment included high-fidelity and fixed-base type flight simulators and mobile head-mounted eye-tracking devices to record a subject’s eye movements and SA while performing air-to-surface tasks. Results: There were significant differences in pilots’ percentage of fixation in three operating phases: preparation (M = 46.09, SD = 14.79), aiming (M = 24.24, SD = 11.03), and release and break-away (M = 33.98, SD = 14.46). Also, there were significant differences in pilots’ pupil sizes, which were largest in the aiming phase (M = 27,621, SD = 6390.8), followed by release and break-away (M = 27,173, SD = 5830.46), then preparation (M = 25,710, SD = 6078.79), which was the smallest. Furthermore, pilots with better SA performance showed lower perceived workload (M = 30.60, SD = 17.86), and pilots with poor SA performance showed higher perceived workload (M = 60.77, SD = 12.72). Pilots’ percentage of fixation and average fixation duration among five different areas of interest showed significant differences as well. Discussion: Eye-tracking devices can aid in capturing pilots’ visual scan patterns and SA performance, unlike traditional flight simulators. Therefore, integrating eye-tracking devices into the simulator may be a useful method for promoting SA training in flight operations, and can provide in-depth understanding of the mechanism of visual scan patterns and information processing to improve training effectiveness in aviation

    Telerobotic workstation design aid

    Get PDF
    Telerobot systems are being developed to support a number of space mission applications. In low earth orbit, telerobots and teleoperated manipulators will be used in shuttle operations and space station construction/maintenance. Free flying telerobotic service vehicles will be used at low and geosynchronous orbital operations. Rovers and autonomous vehicles will be equipped with telerobotic devices in planetary exploration. In all of these systems, human operators will interact with the robot system at varied levels during the scheduled operations. The human operators may be in either orbital or ground-based control systems. To assure integrated system development and maximum utility across these systems, designers must be sensitive to the constraints and capabilities that the human brings to system operation and must be assisted in applying these human factors to system development. The simulation and analysis system is intended to serve the needs of system analysis/designers as an integrated workstation in support of telerobotic design

    [Protocol] Visual feedback of the individual's medical imaging results for changing health behaviours in clinical and non-clinical populations

    Get PDF
    Primary objective To assess the extent to which presentation to the individual of images of their own body created during medical imaging procedures increases or decreases health behaviours such as: 1. dietary fat intake; 2. physical activity levels; 3. smoking; 4. alcohol use; 5. damaging exposure to sunlight or other sources of ultraviolet radiation. This will be considered in comparison to the impact of communicating the same findings in a way which does not involve showing the person the source images derived from the imaging procedure (such as solely through oral feedback, or a written report). Secondary objective A secondary objective is to determine the impact of this feedback on consumers': 1. understanding of the relevant condition and of the risk information they have been given; 2. perceived severity and risk of disease; 3. perceived control over the disease risk; 4. perceived effectiveness of the risk-reducing behaviour; 5. emotional response, including general anxiety and condition-specific worry

    Dynamics of Attention in Depth: Evidence from Mutli-Element Tracking

    Full text link
    The allocation of attention in depth is examined using a multi-element tracking paradigm. Observers are required to track a predefined subset of from two to eight elements in displays containing up to sixteen identical moving elements. We first show that depth cues, such as binocular disparity and occlusion through T-junctions, improve performance in a multi-element tracking task in the case where element boundaries are allowed to intersect in the depiction of motion in a single fronto-parallel plane. We also show that the allocation of attention across two perceptually distinguishable planar surfaces either fronto-parallel or receding at a slanting angle and defined by coplanar elements, is easier than allocation of attention within a single surface. The same result was not found when attention was required to be deployed across items of two color populations rather than of a single color. Our results suggest that, when surface information does not suffice to distinguish between targets and distractors that are embedded in these surfaces, division of attention across two surfaces aids in tracking moving targets.National Science Foundation (IRI-94-01659); Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Use of Linear Perspective Scene Cues in a Simulated Height Regulation Task

    Get PDF
    As part of a long-term effort to quantify the effects of visual scene cuing and non-visual motion cuing in flight simulators, an experimental study of the pilot's use of linear perspective cues in a simulated height-regulation task was conducted. Six test subjects performed a fixed-base tracking task with a visual display consisting of a simulated horizon and a perspective view of a straight, infinitely-long roadway of constant width. Experimental parameters were (1) the central angle formed by the roadway perspective and (2) the display gain. The subject controlled only the pitch/height axis; airspeed, bank angle, and lateral track were fixed in the simulation. The average RMS height error score for the least effective display configuration was about 25% greater than the score for the most effective configuration. Overall, larger and more highly significant effects were observed for the pitch and control scores. Model analysis was performed with the optimal control pilot model to characterize the pilot's use of visual scene cues, with the goal of obtaining a consistent set of independent model parameters to account for display effects

    Evaluating distributed cognitive resources for wayfinding in a desktop virtual environment.

    Get PDF
    As 3D interfaces, and in particular virtual environments, become increasingly realistic there is a need to investigate the location and configuration of information resources, as distributed in the humancomputer system, to support any required activities. It is important for the designer of 3D interfaces to be aware of information resource availability and distribution when considering issues such as cognitive load on the user. This paper explores how a model of distributed resources can support the design of alternative aids to virtual environment wayfinding with varying levels of cognitive load. The wayfinding aids have been implemented and evaluated in a desktop virtual environment
    • …
    corecore