1,578 research outputs found

    Attending to Future Tokens For Bidirectional Sequence Generation

    Full text link
    Neural sequence generation is typically performed token-by-token and left-to-right. Whenever a token is generated only previously produced tokens are taken into consideration. In contrast, for problems such as sequence classification, bidirectional attention, which takes both past and future tokens into consideration, has been shown to perform much better. We propose to make the sequence generation process bidirectional by employing special placeholder tokens. Treated as a node in a fully connected graph, a placeholder token can take past and future tokens into consideration when generating the actual output token. We verify the effectiveness of our approach experimentally on two conversational tasks where the proposed bidirectional model outperforms competitive baselines by a large margin.Comment: Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019, Hong Kong, Chin

    Towards Bidirectional Hierarchical Representations for Attention-Based Neural Machine Translation

    Full text link
    This paper proposes a hierarchical attentional neural translation model which focuses on enhancing source-side hierarchical representations by covering both local and global semantic information using a bidirectional tree-based encoder. To maximize the predictive likelihood of target words, a weighted variant of an attention mechanism is used to balance the attentive information between lexical and phrase vectors. Using a tree-based rare word encoding, the proposed model is extended to sub-word level to alleviate the out-of-vocabulary (OOV) problem. Empirical results reveal that the proposed model significantly outperforms sequence-to-sequence attention-based and tree-based neural translation models in English-Chinese translation tasks.Comment: Accepted for publication at EMNLP 201

    Plan, Attend, Generate: Character-level Neural Machine Translation with Planning in the Decoder

    Full text link
    We investigate the integration of a planning mechanism into an encoder-decoder architecture with an explicit alignment for character-level machine translation. We develop a model that plans ahead when it computes alignments between the source and target sequences, constructing a matrix of proposed future alignments and a commitment vector that governs whether to follow or recompute the plan. This mechanism is inspired by the strategic attentive reader and writer (STRAW) model. Our proposed model is end-to-end trainable with fully differentiable operations. We show that it outperforms a strong baseline on three character-level decoder neural machine translation on WMT'15 corpus. Our analysis demonstrates that our model can compute qualitatively intuitive alignments and achieves superior performance with fewer parameters.Comment: Accepted to Rep4NLP 2017 Workshop at ACL 2017 Conferenc
    • …
    corecore