1,167 research outputs found

    RC4 Encryption-A Literature Survey

    Get PDF
    AbstractA chronological survey demonstrating the cryptanalysis of RC4 stream cipher is presented in this paper. We have summarized the various weaknesses of RC4 algorithm followed by the recently proposed enhancements available in the literature. It is established that innovative research efforts are required to develop secure RC4 algorithm, which can remove the weaknesses of RC4, such as biased bytes, key collisions, and key recovery attacks on WPA. These flaws in RC4 are still offering an open challenge for developers. Hence our chronological survey corroborates the fact that even though researchers are working on RC4 stream cipher since last two decades, it still offers a plethora of research issues. The attraction of community towards RC4 is still alive

    Attacks on the RC4 stream cipher

    Full text link

    A novel scrambling algorithm for a robust WEP implementation [wired equivalent privacy protocol]

    Get PDF

    MV3: A new word based stream cipher using rapid mixing and revolving buffers

    Full text link
    MV3 is a new word based stream cipher for encrypting long streams of data. A direct adaptation of a byte based cipher such as RC4 into a 32- or 64-bit word version will obviously need vast amounts of memory. This scaling issue necessitates a look for new components and principles, as well as mathematical analysis to justify their use. Our approach, like RC4's, is based on rapidly mixing random walks on directed graphs (that is, walks which reach a random state quickly, from any starting point). We begin with some well understood walks, and then introduce nonlinearity in their steps in order to improve security and show long term statistical correlations are negligible. To minimize the short term correlations, as well as to deter attacks using equations involving successive outputs, we provide a method for sequencing the outputs derived from the walk using three revolving buffers. The cipher is fast -- it runs at a speed of less than 5 cycles per byte on a Pentium IV processor. A word based cipher needs to output more bits per step, which exposes more correlations for attacks. Moreover we seek simplicity of construction and transparent analysis. To meet these requirements, we use a larger state and claim security corresponding to only a fraction of it. Our design is for an adequately secure word-based cipher; our very preliminary estimate puts the security close to exhaustive search for keys of size < 256 bits.Comment: 27 pages, shortened version will appear in "Topics in Cryptology - CT-RSA 2007

    MRC4: A Modified RC4 Algorithm using Symmetric Random Function Generator for Improved Cryptographic Features

    Get PDF
    The Rivest Cipher 4 (RC4) has been one of the most popular stream ciphers for providing symmetric key encryption, and is now proposed as an efficient cipher within light-weight cryptography. As an algorithm it has been considered to be one of the fastest stream ciphers and one of the easiest to implement. Unfortunately, despite its simplicity of usage, a number of attacks on it have been found. Therefore, various improvements of this algorithm exist in cryptography, but none of them use proper randomness. This paper outlines modified version of RC4 and which has the desirable features of an efficient stream cipher algorithm, and which integrates the Symmetric Random Function Generator (SRFG) method. Though RC4 uses pseudorandom features with an initialisation vector and a seed value, the use of true randomness in RC4 is novel in this domain. Therefore, this paper proposes a modified RC4 as MRC4, and which then evaluates the statistical features of MRC4 based upon parameters such as non-linearity, resiliency, balancedness, propagation and immunity. Further, we have compared the security features and confusion-diffusion attributes with some recent variants of RC4 and have found that MRC4 is efficient in withstanding against attacks. The experimental results show that MRC4 supports a 60% better confusion property and 50% better diffusion as compared to the original RC4 method

    Year 2010 Issues on Cryptographic Algorithms

    Get PDF
    In the financial sector, cryptographic algorithms are used as fundamental techniques for assuring confidentiality and integrity of data used in financial transactions and for authenticating entities involved in the transactions. Currently, the most widely used algorithms appear to be two-key triple DES and RC4 for symmetric ciphers, RSA with a 1024-bit key for an asymmetric cipher and a digital signature, and SHA-1 for a hash function according to international standards and guidelines related to the financial transactions. However, according to academic papers and reports regarding the security evaluation for such algorithms, it is difficult to ensure enough security by using the algorithms for a long time period, such as 10 or 15 years, due to advances in cryptanalysis techniques, improvement of computing power, and so on. To enhance the transition to more secure ones, National Institute of Standards and Technology (NIST) of the United States describes in various guidelines that NIST will no longer approve two-key triple DES, RSA with a 1024-bit key, and SHA-1 as the algorithms suitable for IT systems of the U.S. Federal Government after 2010. It is an important issue how to advance the transition of the algorithms in the financial sector. This paper refers to issues regarding the transition as Year 2010 issues in cryptographic algorithms. To successfully complete the transition by 2010, the deadline set by NIST, it is necessary for financial institutions to begin discussing the issues at the earliest possible date. This paper summarizes security evaluation results of the current algorithms, and describes Year 2010 issues, their impact on the financial industry, and the transition plan announced by NIST. This paper also shows several points to be discussed when dealing with Year 2010 issues.Cryptographic algorithm; Symmetric cipher; Asymmetric cipher; Security; Year 2010 issues; Hash function
    • …
    corecore