233 research outputs found

    Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A Contemporary Survey

    Full text link
    Adversarial attacks and defenses in machine learning and deep neural network have been gaining significant attention due to the rapidly growing applications of deep learning in the Internet and relevant scenarios. This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques, with a focus on deep neural network-based classification models. Specifically, we conduct a comprehensive classification of recent adversarial attack methods and state-of-the-art adversarial defense techniques based on attack principles, and present them in visually appealing tables and tree diagrams. This is based on a rigorous evaluation of the existing works, including an analysis of their strengths and limitations. We also categorize the methods into counter-attack detection and robustness enhancement, with a specific focus on regularization-based methods for enhancing robustness. New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks, and a hierarchical classification of the latest defense methods is provided, highlighting the challenges of balancing training costs with performance, maintaining clean accuracy, overcoming the effect of gradient masking, and ensuring method transferability. At last, the lessons learned and open challenges are summarized with future research opportunities recommended.Comment: 46 pages, 21 figure

    Deep Face Morph Detection Based on Wavelet Decomposition

    Get PDF
    Morphed face images are maliciously used by criminals to circumvent the official process for receiving a passport where a look-alike accomplice embarks on requesting a passport. Morphed images are either synthesized by alpha-blending or generative networks such as Generative Adversarial Networks (GAN). Detecting morphed images is one of the fundamental problems associated with border control scenarios. Deep Neural Networks (DNN) have emerged as a promising solution for a myriad of applications such as face recognition, face verification, fake image detection, and so forth. The Biometrics communities have leveraged DNN to tackle fundamental problems such as morphed face detection. In this dissertation, we delve into data-driven morph detection which is of great significance in terms of national security. We propose several wavelet-based face morph detection schemes which employ some of the computer vision algorithms such as image wavelet analysis, group sparsity, feature selection, and the visual attention mechanisms. Wavelet decomposition enables us to leverage the fine-grained frequency content of an image to boost localizing manipulated areas in an image. Our methodologies are as follows: (1) entropy-based single morph detection, (2) entropy-based differential morph detection, (3) morph detection using group sparsity, and (4) Attention aware morph detection. In the first methodology, we harness mismatches between the entropy distribution of wavelet subbands corresponding to a pair of real and morph images to find a subset of most discriminative wavelet subbands which leads to an increase of morph detection accuracy. As the second methodology, we adopt entropy-based subband selection to tackle differential morph detection. In the third methodology, group sparsity is leveraged for subband selection. In other words, adding a group sparsity constraint to the loss function of our DNN leads to an implicit subband selection. Our fourth methodology consists of different types of visual attention mechanisms such as convolutional block attention modules and self-attention resulting in boosting morph detection accuracy. We demonstrate efficiency of our proposed algorithms through several morph datasets via extensive evaluations as well as visualization methodologies
    • …
    corecore