4,944 research outputs found

    Busy Beaver Scores and Alphabet Size

    Full text link
    We investigate the Busy Beaver Game introduced by Rado (1962) generalized to non-binary alphabets. Harland (2016) conjectured that activity (number of steps) and productivity (number of non-blank symbols) of candidate machines grow as the alphabet size increases. We prove this conjecture for any alphabet size under the condition that the number of states is sufficiently large. For the measure activity we show that increasing the alphabet size from two to three allows an increase. By a classical construction it is even possible to obtain a two-state machine increasing activity and productivity of any machine if we allow an alphabet size depending on the number of states of the original machine. We also show that an increase of the alphabet by a factor of three admits an increase of activity

    Numerical Evaluation of Algorithmic Complexity for Short Strings: A Glance into the Innermost Structure of Randomness

    Full text link
    We describe an alternative method (to compression) that combines several theoretical and experimental results to numerically approximate the algorithmic (Kolmogorov-Chaitin) complexity of all ∑n=182n\sum_{n=1}^82^n bit strings up to 8 bits long, and for some between 9 and 16 bits long. This is done by an exhaustive execution of all deterministic 2-symbol Turing machines with up to 4 states for which the halting times are known thanks to the Busy Beaver problem, that is 11019960576 machines. An output frequency distribution is then computed, from which the algorithmic probability is calculated and the algorithmic complexity evaluated by way of the (Levin-Zvonkin-Chaitin) coding theorem.Comment: 29 pages, 5 figures. Version as accepted by the journal Applied Mathematics and Computatio

    Problems in number theory from busy beaver competition

    Full text link
    By introducing the busy beaver competition of Turing machines, in 1962, Rado defined noncomputable functions on positive integers. The study of these functions and variants leads to many mathematical challenges. This article takes up the following one: How can a small Turing machine manage to produce very big numbers? It provides the following answer: mostly by simulating Collatz-like functions, that are generalizations of the famous 3x+1 function. These functions, like the 3x+1 function, lead to new unsolved problems in number theory.Comment: 35 page

    The Busy Beaver Competition: a historical survey

    Full text link
    Tibor Rado defined the Busy Beaver Competition in 1962. He used Turing machines to give explicit definitions for some functions that are not computable and grow faster than any computable function. He put forward the problem of computing the values of these functions on numbers 1, 2, 3, ... More and more powerful computers have made possible the computation of lower bounds for these values. In 1988, Brady extended the definitions to functions on two variables. We give a historical survey of these works. The successive record holders in the Busy Beaver Competition are displayed, with their discoverers, the date they were found, and, for some of them, an analysis of their behavior.Comment: 70 page

    Busy beavers gone wild

    Full text link
    We show some incompleteness results a la Chaitin using the busy beaver functions. Then, with the help of ordinal logics, we show how to obtain a theory in which the values of the busy beaver functions can be provably established and use this to reveal a structure on the provability of the values of these functions
    • …
    corecore