9 research outputs found

    Point compression for the trace zero subgroup over a small degree extension field

    Get PDF
    Using Semaev's summation polynomials, we derive a new equation for the Fq\mathbb{F}_q-rational points of the trace zero variety of an elliptic curve defined over Fq\mathbb{F}_q. Using this equation, we produce an optimal-size representation for such points. Our representation is compatible with scalar multiplication. We give a point compression algorithm to compute the representation and a decompression algorithm to recover the original point (up to some small ambiguity). The algorithms are efficient for trace zero varieties coming from small degree extension fields. We give explicit equations and discuss in detail the practically relevant cases of cubic and quintic field extensions.Comment: 23 pages, to appear in Designs, Codes and Cryptograph

    2DT-GLS: Faster and exception-free scalar multiplication in the GLS254 binary curve

    Get PDF
    We revisit and improve performance of arithmetic in the binary GLS254 curve by introducing the 2DT-GLS scalar multiplication algorithm. The algorithm includes theoretical and practice-oriented contributions of potential independent interest: (i) for the first time, a proof that the GLS scalar multiplication algorithm does not incur exceptions, such that faster incomplete formulas can be used; (ii) faster dedicated atomic formulas that alleviate the cost of precomputation; (iii) a table compression technique that reduces the storage needed for precomputed points; (iv) a refined constant-time scalar decomposition algorithm that is more robust to rounding. We also present the first GLS254 implementation for Armv8. With our contributions, we set new speed records for constant-time scalar multiplication by 34.5%34.5\% and 6%6\% on 64-bit Arm and Intel platforms, respectively

    On the Analysis of Public-Key Cryptologic Algorithms

    Get PDF
    The RSA cryptosystem introduced in 1977 by Ron Rivest, Adi Shamir and Len Adleman is the most commonly deployed public-key cryptosystem. Elliptic curve cryptography (ECC) introduced in the mid 80's by Neal Koblitz and Victor Miller is becoming an increasingly popular alternative to RSA offering competitive performance due the use of smaller key sizes. Most recently hyperelliptic curve cryptography (HECC) has been demonstrated to have comparable and in some cases better performance than ECC. The security of RSA relies on the integer factorization problem whereas the security of (H)ECC is based on the (hyper)elliptic curve discrete logarithm problem ((H)ECDLP). In this thesis the practical performance of the best methods to solve these problems is analyzed and a method to generate secure ephemeral ECC parameters is presented. The best publicly known algorithm to solve the integer factorization problem is the number field sieve (NFS). Its most time consuming step is the relation collection step. We investigate the use of graphics processing units (GPUs) as accelerators for this step. In this context, methods to efficiently implement modular arithmetic and several factoring algorithms on GPUs are presented and their performance is analyzed in practice. In conclusion, it is shown that integrating state-of-the-art NFS software packages with our GPU software can lead to a speed-up of 50%. In the case of elliptic and hyperelliptic curves for cryptographic use, the best published method to solve the (H)ECDLP is the Pollard rho algorithm. This method can be made faster using classes of equivalence induced by curve automorphisms like the negation map. We present a practical analysis of their use to speed up Pollard rho for elliptic curves and genus 2 hyperelliptic curves defined over prime fields. As a case study, 4 curves at the 128-bit theoretical security level are analyzed in our software framework for Pollard rho to estimate their practical security level. In addition, we present a novel many-core architecture to solve the ECDLP using the Pollard rho algorithm with the negation map on FPGAs. This architecture is used to estimate the cost of solving the Certicom ECCp-131 challenge with a cluster of FPGAs. Our design achieves a speed-up factor of about 4 compared to the state-of-the-art. Finally, we present an efficient method to generate unique, secure and unpredictable ephemeral ECC parameters to be shared by a pair of authenticated users for a single communication. It provides an alternative to the customary use of fixed ECC parameters obtained from publicly available standards designed by untrusted third parties. The effectiveness of our method is demonstrated with a portable implementation for regular PCs and Android smartphones. On a Samsung Galaxy S4 smartphone our implementation generates unique 128-bit secure ECC parameters in 50 milliseconds on average

    Cryptanalysis and Secure Implementation of Modern Cryptographic Algorithms

    Get PDF
    Cryptanalytic attacks can be divided into two classes: pure mathematical attacks and Side Channel Attacks (SCAs). Pure mathematical attacks are traditional cryptanalytic techniques that rely on known or chosen input-output pairs of the cryptographic function and exploit the inner structure of the cipher to reveal the secret key information. On the other hand, in SCAs, it is assumed that attackers have some access to the cryptographic device and can gain some information from its physical implementation. Cold-boot attack is a SCA which exploits the data remanence property of Random Access Memory (RAM) to retrieve its content which remains readable shortly after its power has been removed. Fault analysis is another example of SCAs in which the attacker is assumed to be able to induce faults in the cryptographic device and observe the faulty output. Then, by careful inspection of faulty outputs, the attacker recovers the secret information, such as secret inner state or secret key. Scan-based Design-For-Test (DFT) is a widely deployed technique for testing hardware chips. Scan-based SCAs exploit the information obtained by analyzing the scanned data in order to retrieve secret information from cryptographic hardware devices that are designed with this testability feature. In the first part of this work, we investigate the use of an off-the-shelf SAT solver, CryptoMinSat, to improve the key recovery of the Advance Encryption Standard (AES-128) key schedules from its corresponding decayed memory images which can be obtained using cold-boot attacks. We also present a fault analysis on both NTRUEncrypt and NTRUSign cryptosystems. For this specific original instantiation of the NTRU encryption system with parameters (N,p,q)(N,p,q), our attack succeeds with probability ≈1−1p\approx 1-\frac{1}{p} and when the number of faulted coefficients is upper bounded by tt, it requires O((pN)t)O((pN)^t) polynomial inversions in Z/pZ[x]/(xN−1)\mathbb Z/p\mathbb Z[x]/(x^{N}-1). We also investigate several techniques to strengthen hardware implementations of NTRUEncrypt against this class of attacks. For NTRUSign with parameters (NN, q=plq=p^l, B\mathcal{B}, \emph{standard}, N\mathcal{N}), when the attacker is able to skip the norm-bound signature checking step, our attack needs one fault to succeed with probability ≈1−1p\approx 1-\frac{1}{p} and requires O((qN)t)O((qN)^t) steps when the number of faulted polynomial coefficients is upper bounded by tt. The attack is also applicable to NTRUSign utilizing the \emph{transpose} NTRU lattice but it requires double the number of fault injections. Different countermeasures against the proposed attack are also investigated. Furthermore, we present a scan-based SCA on NTRUEncrypt hardware implementations that employ scan-based DFT techniques. Our attack determines the scan chain structure of the polynomial multiplication circuits used in the decryption algorithm which allows the cryptanalyst to efficiently retrieve the secret key. Several key agreement schemes based on matrices were recently proposed. For example, \'{A}lvarez \emph{et al.} proposed a scheme in which the secret key is obtained by multiplying powers of block upper triangular matrices whose elements are defined over Zp\mathbb{Z}_p. Climent \emph{et al.} identified the elements of the endomorphisms ring End(Zp×Zp2)End(\mathbb{Z}_p \times \mathbb{Z}_{p^2}) with elements in a set, EpE_p, of matrices of size 2×22\times 2, whose elements in the first row belong to Zp\mathbb{Z}_{p} and the elements in the second row belong to Zp2\mathbb{Z}_{p^2}. Keith Salvin presented a key exchange protocol using matrices in the general linear group, GL(r,Zn)GL(r,\mathbb{Z}_n), where nn is the product of two distinct large primes. The system is fully specified in the US patent number 7346162 issued in 2008. In the second part of this work, we present mathematical cryptanalytic attacks against these three schemes and show that they can be easily broken for all practical choices of their security parameters

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..
    corecore