132 research outputs found

    On the security of text-based 3D CAPTCHAs

    Get PDF
    CAPTCHAs have become a standard security mechanism that are used to deter automated abuse of online services intended for humans. However, many existing CAPTCHA schemes to date have been successfully broken. As such, a number of CAPTCHA developers have explored alternative methods of designing CAPTCHAs. 3D CAPTCHAs is a design alternative that has been proposed to overcome the limitations of traditional CAPTCHAs. These CAPTCHAs are designed to capitalize on the human visual system\u27s natural ability to perceive 3D objects from an image. The underlying security assumption is that it is difficult for a computer program to identify the 3D content. This paper investigates the robustness of text-based 3D CAPTCHAs. In particular, we examine three existing text-based 3D CAPTCHA schemes that are currently deployed on a number of websites. While the direct use of Optical Character Recognition (OCR) software is unable to correctly solve these textbased 3D CAPTCHA challenges, we highlight certain patterns in the 3D CAPTCHAs can be exploited to identify important information within the CAPTCHA. By extracting this information, this paper demonstrates that automated attacks can be used to solve these 3D CAPTCHAs with a high degree of success

    The robustness of animated text CAPTCHAs

    Get PDF
    PhD ThesisCAPTCHA is standard security technology that uses AI techniques to tells computer and human apart. The most widely used CAPTCHA are text-based CAPTCHA schemes. The robustness and usability of these CAPTCHAs relies mainly on the segmentation resistance mechanism that provides robustness against individual character recognition attacks. However, many CAPTCHAs have been shown to have critical flaws caused by many exploitable invariants in their design, leaving only a few CAPTCHA schemes resistant to attacks, including ReCAPTCHA and the Wikipedia CAPTCHA. Therefore, new alternative approaches to add motion to the CAPTCHA are used to add another dimension to the character cracking algorithms by animating the distorted characters and the background, which are also supported by tracking resistance mechanisms that prevent the attacks from identifying the main answer through frame-toframe attacks. These technologies are used in many of the new CAPTCHA schemes including the Yahoo CAPTCHA, CAPTCHANIM, KillBot CAPTCHAs, non-standard CAPTCHA and NuCAPTCHA. Our first question: can the animated techniques included in the new CAPTCHA schemes provide the required level of robustness against the attacks? Our examination has shown many of the CAPTCHA schemes that use the animated features can be broken through tracking attacks including the CAPTCHA schemes that uses complicated tracking resistance mechanisms. The second question: can the segmentation resistance mechanism used in the latest standard text-based CAPTCHA schemes still provide the additional required level of resistance against attacks that are not present missed in animated schemes? Our test against the latest version of ReCAPTCHA and the Wikipedia CAPTCHA exposed vulnerability problems against the novel attacks mechanisms that achieved a high success rate against them. The third question: how much space is available to design an animated text-based CAPTCHA scheme that could provide a good balance between security and usability? We designed a new animated text-based CAPTCHA using guidelines we designed based on the results of our attacks on standard and animated text-based CAPTCHAs, and we then tested its security and usability to answer this question. ii In this thesis, we put forward different approaches to examining the robustness of animated text-based CAPTCHA schemes and other standard text-based CAPTCHA schemes against segmentation and tracking attacks. Our attacks included several methodologies that required thinking skills in order to distinguish the animated text from the other animated noises, including the text distorted by highly tracking resistance mechanisms that displayed them partially as animated segments and which looked similar to noises in other CAPTCHA schemes. These attacks also include novel attack mechanisms and other mechanisms that uses a recognition engine supported by attacking methods that exploit the identified invariants to recognise the connected characters at once. Our attacks also provided a guideline for animated text-based CAPTCHAs that could provide resistance to tracking and segmentation attacks which we designed and tested in terms of security and usability, as mentioned before. Our research also contributes towards providing a toolbox for breaking CAPTCHAs in addition to a list of robustness and usability issues in the current CAPTCHA design that can be used to provide a better understanding of how to design a more resistant CAPTCHA scheme

    CAPTCHA Types and Breaking Techniques: Design Issues, Challenges, and Future Research Directions

    Full text link
    The proliferation of the Internet and mobile devices has resulted in malicious bots access to genuine resources and data. Bots may instigate phishing, unauthorized access, denial-of-service, and spoofing attacks to mention a few. Authentication and testing mechanisms to verify the end-users and prohibit malicious programs from infiltrating the services and data are strong defense systems against malicious bots. Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is an authentication process to confirm that the user is a human hence, access is granted. This paper provides an in-depth survey on CAPTCHAs and focuses on two main things: (1) a detailed discussion on various CAPTCHA types along with their advantages, disadvantages, and design recommendations, and (2) an in-depth analysis of different CAPTCHA breaking techniques. The survey is based on over two hundred studies on the subject matter conducted since 2003 to date. The analysis reinforces the need to design more attack-resistant CAPTCHAs while keeping their usability intact. The paper also highlights the design challenges and open issues related to CAPTCHAs. Furthermore, it also provides useful recommendations for breaking CAPTCHAs

    A simple generic attack on text captchas

    Get PDF
    Text-based Captchas have been widely deployed across the Internet to defend against undesirable or malicious bot programs. Many attacks have been proposed; these fine prior art advanced the scientific understanding of Captcha robustness, but most of them have a limited applicability. In this paper, we report a simple, low-cost but powerful attack that effectively breaks a wide range of text Captchas with distinct design features, including those deployed by Google, Microsoft, Yahoo!, Amazon and other Internet giants. For all the schemes, our attack achieved a success rate ranging from 5% to 77%, and achieved an average speed of solving a puzzle in less than 15 seconds on a standard desktop computer (with a 3.3GHz Intel Core i3 CPU and 2 GB RAM). This is to date the simplest generic attack on text Captchas. Our attack is based on Log-Gabor filters; a famed application of Gabor filters in computer security is John Daugman’s iris recognition algorithm. Our work is the first to apply Gabor filters for breaking Captchas

    Diff-CAPTCHA: An Image-based CAPTCHA with Security Enhanced by Denoising Diffusion Model

    Full text link
    To enhance the security of text CAPTCHAs, various methods have been employed, such as adding the interference lines on the text, randomly distorting the characters, and overlapping multiple characters. These methods partly increase the difficulty of automated segmentation and recognition attacks. However, facing the rapid development of the end-to-end breaking algorithms, their security has been greatly weakened. The diffusion model is a novel image generation model that can generate the text images with deep fusion of characters and background images. In this paper, an image-click CAPTCHA scheme called Diff-CAPTCHA is proposed based on denoising diffusion models. The background image and characters of the CAPTCHA are treated as a whole to guide the generation process of a diffusion model, thus weakening the character features available for machine learning, enhancing the diversity of character features in the CAPTCHA, and increasing the difficulty of breaking algorithms. To evaluate the security of Diff-CAPTCHA, this paper develops several attack methods, including end-to-end attacks based on Faster R-CNN and two-stage attacks, and Diff-CAPTCHA is compared with three baseline schemes, including commercial CAPTCHA scheme and security-enhanced CAPTCHA scheme based on style transfer. The experimental results show that diffusion models can effectively enhance CAPTCHA security while maintaining good usability in human testing
    • …
    corecore