90 research outputs found

    A Mobile Secure Bluetooth-Enabled Cryptographic Provider

    Get PDF
    The use of digital X509v3 public key certificates, together with different standards for secure digital signatures are commonly adopted to establish authentication proofs between principals, applications and services. One of the robustness characteristics commonly associated with such mechanisms is the need of hardware-sealed cryptographic devices, such as Hardware-Security Modules (or HSMs), smart cards or hardware-enabled tokens or dongles. These devices support internal functions for management and storage of cryptographic keys, allowing the isolated execution of cryptographic operations, with the keys or related sensitive parameters never exposed. The portable devices most widely used are USB-tokens (or security dongles) and internal ships of smart cards (as it is also the case of citizen cards, banking cards or ticketing cards). More recently, a new generation of Bluetooth-enabled smart USB dongles appeared, also suitable to protect cryptographic operations and digital signatures for secure identity and payment applications. The common characteristic of such devices is to offer the required support to be used as secure cryptographic providers. Among the advantages of those portable cryptographic devices is also their portability and ubiquitous use, but, in consequence, they are also frequently forgotten or even lost. USB-enabled devices imply the need of readers, not always and not commonly available for generic smartphones or users working with computing devices. Also, wireless-devices can be specialized or require a development effort to be used as standard cryptographic providers. An alternative to mitigate such problems is the possible adoption of conventional Bluetooth-enabled smartphones, as ubiquitous cryptographic providers to be used, remotely, by client-side applications running in users’ devices, such as desktop or laptop computers. However, the use of smartphones for safe storage and management of private keys and sensitive parameters requires a careful analysis on the adversary model assumptions. The design options to implement a practical and secure smartphone-enabled cryptographic solution as a product, also requires the approach and the better use of the more interesting facilities provided by frameworks, programming environments and mobile operating systems services. In this dissertation we addressed the design, development and experimental evaluation of a secure mobile cryptographic provider, designed as a mobile service provided in a smartphone. The proposed solution is designed for Android-Based smartphones and supports on-demand Bluetooth-enabled cryptographic operations, including standard digital signatures. The addressed mobile cryptographic provider can be used by applications running on Windows-enabled computing devices, requesting digital signatures. The solution relies on the secure storage of private keys related to X509v3 public certificates and Android-based secure elements (SEs). With the materialized solution, an application running in a Windows computing device can request standard digital signatures of documents, transparently executed remotely by the smartphone regarded as a standard cryptographic provider

    Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks

    Get PDF
    [Abstract] Blockchain and other Distributed Ledger Technologies (DLTs) have evolved significantly in the last years and their use has been suggested for numerous applications due to their ability to provide transparency, redundancy and accountability. In the case of blockchain, such characteristics are provided through public-key cryptography and hash functions. However, the fast progress of quantum computing has opened the possibility of performing attacks based on Grover's and Shor's algorithms in the near future. Such algorithms threaten both public-key cryptography and hash functions, forcing to redesign blockchains to make use of cryptosystems that withstand quantum attacks, thus creating which are known as post-quantum, quantum-proof, quantum-safe or quantum-resistant cryptosystems. For such a purpose, this article first studies current state of the art on post-quantum cryptosystems and how they can be applied to blockchains and DLTs. Moreover, the most relevant post-quantum blockchain systems are studied, as well as their main challenges. Furthermore, extensive comparisons are provided on the characteristics and performance of the most promising post-quantum public-key encryption and digital signature schemes for blockchains. Thus, this article seeks to provide a broad view and useful guidelines on post-quantum blockchain security to future blockchain researchers and developers.10.13039/501100010801-Xunta de Galicia (Grant Number: ED431G2019/01) 10.13039/501100011033-Agencia Estatal de InvestigaciĂłn (Grant Number: TEC2016-75067-C4-1-R and RED2018-102668-T) 10.13039/501100008530-European Regional Development FundXunta de Galicia; ED431G2019/0

    Every step you take, I’ll be watching you: Practical StepAuth-entication of RFID paths

    Get PDF

    Wireless Protocols for Anti Cloning and Security

    Get PDF
    RFID system (Radio-Frequency Identification) is a technology for automated identification of objects and people. Human beings are smart enough to identify an object under a variety of challenge circumstances. RFID systems are emerging as one of the most pervasive computing technologies. But there are still a large number of problems that are to be addressed. One of the fundamental issues still to be addressed is privacy, which concludes association threat, location threat, preference threat, constellation threat, transaction threat, action threat and breadcrumb threat (Kim, J., Yang, C, Jeon, J,2007). Misbehaviours of both readers and tags will lead to attacks to the system. The common attacks on the readers, tags and the air interface between them comprise: Tracking or Tracing, Tamper, Clandestine Scanning, Counterfeit Tags, Cloning Tags, Eavesdropping, Replay, man-in-the-middle attack, Spoofing, Differential power analysis, Timing Attacks, Denial of Service, Physical Attacking and so on (P. Cuenca and L. Orozco-Barbosa, 2006.),(Kim, J., Yang, C, Jeon, J, 2007). Due to scarceness of resources most of the proposed protocols were designed using symmetric key cryptographic algorithms. However, it has been shown that it is inevitable to use public-key cryptographic algorithms to satisfy these requirements. A number of mechanisms have been devised   to overcome the problems related to security and privacy issue of RFID systems. In this paper we propose three anonymous RFID authentication protocols and prove that they are secure in the traditional cryptographic framework. Our model allows most of the threats that apply to RFIDs systems including, denial of service, impersonation, malicious traceability, information leakage through power analysis and active man-in-the middle attacks. Our protocols are efficient and scalable

    Lattice Attacks against Elliptic-Curve Signatures with Blinded Scalar Multiplication

    Get PDF
    International audienceElliptic curve cryptography is today the prevailing approach to get efficient public-key cryptosystems and digital signatures. Most of elliptic curve signature schemes use a \emph{nonce} in the computation of each signature and the knowledge of this nonce is sufficient to fully recover the secret key of the scheme. Even a few bits of the nonce over several signatures allow a complete break of the scheme by lattice-based attacks. Several works have investigated how to efficiently apply such attacks when partial information on the nonce can be recovered through side-channel attacks. However, these attacks usually target unprotected implementation and/or make ideal assumptions on the recovered information, and it is not clear how they would perform in a scenario where common countermeasures are included and where only noisy information leaks via side channels. In this paper, we close this gap by applying such attack techniques against elliptic-curve signature implementations based on a blinded scalar multiplication. Specifically, we extend the famous Howgrave-Graham and Smart lattice attack when the nonces are blinded by the addition of a random multiple of the elliptic-curve group order or by a random Euclidean splitting. We then assume that noisy information on the blinded nonce can be obtained through a template attack targeting the underlying scalar multiplication and we show how to characterize the obtained likelihood scores under a realistic leakage assumption. To deal with this scenario, we introduce a filtering method which given a set of signatures and associated likelihood scores maximizes the success probability of the lattice attack. Our approach is backed up with attack simulation results for several signal-to-noise ratio of the exploited leakage

    Side Channel Attacks on IoT Applications

    Get PDF

    Fault attacks on RSA and elliptic curve cryptosystems

    Full text link
    This thesis answered how a fault attack targeting software used to program EEPROM can threaten hardware devices, for instance IoT devices. The successful fault attacks proposed in this thesis will certainly warn designers of hardware devices of the security risks their devices may face on the programming leve

    A survey of IoT security based on a layered architecture of sensing and data analysis

    Get PDF
    The Internet of Things (IoT) is leading today’s digital transformation. Relying on a combination of technologies, protocols, and devices such as wireless sensors and newly developed wearable and implanted sensors, IoT is changing every aspect of daily life, especially recent applications in digital healthcare. IoT incorporates various kinds of hardware, communication protocols, and services. This IoT diversity can be viewed as a double-edged sword that provides comfort to users but can lead also to a large number of security threats and attacks. In this survey paper, a new compacted and optimized architecture for IoT is proposed based on five layers. Likewise, we propose a new classification of security threats and attacks based on new IoT architecture. The IoT architecture involves a physical perception layer, a network and protocol layer, a transport layer, an application layer, and a data and cloud services layer. First, the physical sensing layer incorporates the basic hardware used by IoT. Second, we highlight the various network and protocol technologies employed by IoT, and review the security threats and solutions. Transport protocols are exhibited and the security threats against them are discussed while providing common solutions. Then, the application layer involves application protocols and lightweight encryption algorithms for IoT. Finally, in the data and cloud services layer, the main important security features of IoT cloud platforms are addressed, involving confidentiality, integrity, authorization, authentication, and encryption protocols. The paper is concluded by presenting the open research issues and future directions towards securing IoT, including the lack of standardized lightweight encryption algorithms, the use of machine-learning algorithms to enhance security and the related challenges, the use of Blockchain to address security challenges in IoT, and the implications of IoT deployment in 5G and beyond
    • …
    corecore