3,426 research outputs found

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A virtual actuator approach for the secure control of networked LPV systems under pulse-width modulated DoS attacks

    Get PDF
    In this paper, we formulate and analyze the problem of secure control in the context of networked linear parameter varying (LPV) systems. We consider an energy-constrained, pulse-width modulated (PWM) jammer, which corrupts the control communication channel by performing a denial-of-service (DoS) attack. In particular, the malicious attacker is able to erase the data sent to one or more actuators. In order to achieve secure control, we propose a virtual actuator technique under the assumption that the behavior of the attacker has been identified. The main advantage brought by this technique is that the existing components in the control system can be maintained without need of retuning them, since the virtual actuator will perform a reconfiguration of the plant, hiding the attack from the controller point of view. Using Lyapunov-based results that take into account the possible behavior of the attacker, design conditions for calculating the virtual actuators gains are obtained. A numerical example is used to illustrate the proposed secure control strategy.Peer ReviewedPostprint (author's final draft

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Information Flow for Security in Control Systems

    Full text link
    This paper considers the development of information flow analyses to support resilient design and active detection of adversaries in cyber physical systems (CPS). The area of CPS security, though well studied, suffers from fragmentation. In this paper, we consider control systems as an abstraction of CPS. Here, we extend the notion of information flow analysis, a well established set of methods developed in software security, to obtain a unified framework that captures and extends system theoretic results in control system security. In particular, we propose the Kullback Liebler (KL) divergence as a causal measure of information flow, which quantifies the effect of adversarial inputs on sensor outputs. We show that the proposed measure characterizes the resilience of control systems to specific attack strategies by relating the KL divergence to optimal detection techniques. We then relate information flows to stealthy attack scenarios where an adversary can bypass detection. Finally, this article examines active detection mechanisms where a defender intelligently manipulates control inputs or the system itself in order to elicit information flows from an attacker's malicious behavior. In all previous cases, we demonstrate an ability to investigate and extend existing results by utilizing the proposed information flow analyses

    Resilient State Estimation for Nonlinear Discrete-Time Systems via Input and State Interval Observer Synthesis

    Full text link
    This paper addresses the problem of resilient state estimation and attack reconstruction for bounded-error nonlinear discrete-time systems with nonlinear observations/ constraints, where both sensors and actuators can be compromised by false data injection attack signals/unknown inputs. By leveraging mixed-monotone decomposition of nonlinear functions, as well as affine parallel outer-approximation of the observation functions, along with introducing auxiliary states to cancel out the effect of the attacks/unknown inputs, our proposed observer recursively computes interval estimates that by construction, contain the true states and unknown inputs of the system. Moreover, we provide several semi-definite programs to synthesize observer gains to ensure input-to-state stability of the proposed observer and optimality of the design in the sense of minimum H∞\mathcal{H}_{\infty} gain.Comment: 7 page
    • …
    corecore