412 research outputs found

    BIOLOGICAL INSPIRED INTRUSION PREVENTION AND SELF-HEALING SYSTEM FOR CRITICAL SERVICES NETWORK

    Get PDF
    With the explosive development of the critical services network systems and Internet, the need for networks security systems have become even critical with the enlargement of information technology in everyday life. Intrusion Prevention System (IPS) provides an in-line mechanism focus on identifying and blocking malicious network activity in real time. This thesis presents new intrusion prevention and self-healing system (SH) for critical services network security. The design features of the proposed system are inspired by the human immune system, integrated with pattern recognition nonlinear classification algorithm and machine learning. Firstly, the current intrusions preventions systems, biological innate and adaptive immune systems, autonomic computing and self-healing mechanisms are studied and analyzed. The importance of intrusion prevention system recommends that artificial immune systems (AIS) should incorporate abstraction models from innate, adaptive immune system, pattern recognition, machine learning and self-healing mechanisms to present autonomous IPS system with fast and high accurate detection and prevention performance and survivability for critical services network system. Secondly, specification language, system design, mathematical and computational models for IPS and SH system are established, which are based upon nonlinear classification, prevention predictability trust, analysis, self-adaptation and self-healing algorithms. Finally, the validation of the system carried out by simulation tests, measuring, benchmarking and comparative studies. New benchmarking metrics for detection capabilities, prevention predictability trust and self-healing reliability are introduced as contributions for the IPS and SH system measuring and validation. Using the software system, design theories, AIS features, new nonlinear classification algorithm, and self-healing system show how the use of presented systems can ensure safety for critical services networks and heal the damage caused by intrusion. This autonomous system improves the performance of the current intrusion prevention system and carries on system continuity by using self-healing mechanism

    Autonomous decision on intrusion detection with trained BDI agents

    Get PDF
    In the context of computer security, the first step to respond to an intrusive incident is the detection of such activity in the monitored system. In recent years, research in intrusion detection has evolved to become a multi-discipline task that involves areas such as data mining, decision analysis, agent-based systems or cost–benefit analysis among others. We propose a multiagent IDS that considers decision analysis techniques in order to configure itself optimally according to the conditions faced. This IDS also provides a quantitative measure of the value of the response decision it can autonomously take. Results regarding the well-known 1999 KDD dataset are shown.Publicad

    MFIRE-2: A Multi Agent System for Flow-based Intrusion Detection Using Stochastic Search

    Get PDF
    Detecting attacks targeted against military and commercial computer networks is a crucial element in the domain of cyberwarfare. The traditional method of signature-based intrusion detection is a primary mechanism to alert administrators to malicious activity. However, signature-based methods are not capable of detecting new or novel attacks. This research continues the development of a novel simulated, multiagent, flow-based intrusion detection system called MFIRE. Agents in the network are trained to recognize common attacks, and they share data with other agents to improve the overall effectiveness of the system. A Support Vector Machine (SVM) is the primary classifier with which agents determine an attack is occurring. Agents are prompted to move to different locations within the network to find better vantage points, and two methods for achieving this are developed. One uses a centralized reputation-based model, and the other uses a decentralized model optimized with stochastic search. The latter is tested for basic functionality. The reputation model is extensively tested in two configurations and results show that it is significantly superior to a system with non-moving agents. The resulting system, MFIRE-2, demonstrates exciting new network defense capabilities, and should be considered for implementation in future cyberwarfare applications

    Adaptive agents applied to intrusion detection

    Get PDF
    Proceeding of: Multi-agent systems and applications III : 3rd International Central and Eastern European Conference on Multi-Agent Systems, CEEMAS 2003 Prague, Czech Republic, June 16–18, 2003This paper proposes a system of agents that make predictions over the presence of intrusions. Some of the agents act as predictors implementing a given Intrusion Detection model, sniffing out the same traffic. An assessment agent weights the forecasts of such predictor agents, giving a final binary conclusion using a probabilistic model. These weights are continuously adapted according to the previous performance of each predictor agent. Other agent establishes if the prediction from the assessor agent was right or not, sending him back the results. This process is continually repeated and runs without human interaction. The effectiveness of our proposal is measured with the usual method applied in Intrusion Detection domain: Receiver Operating Characteristic curves (detection rate versus false alarm rate). Results of the adaptive agents applied to intrusion detection improve ROC curves as it is shown in this paper.Publicad

    A Multi Agent System for Flow-Based Intrusion Detection

    Get PDF
    The detection and elimination of threats to cyber security is essential for system functionality, protection of valuable information, and preventing costly destruction of assets. This thesis presents a Mobile Multi-Agent Flow-Based IDS called MFIREv3 that provides network anomaly detection of intrusions and automated defense. This version of the MFIRE system includes the development and testing of a Multi-Objective Evolutionary Algorithm (MOEA) for feature selection that provides agents with the optimal set of features for classifying the state of the network. Feature selection provides separable data points for the selected attacks: Worm, Distributed Denial of Service, Man-in-the-Middle, Scan, and Trojan. This investigation develops three techniques of self-organization for multiple distributed agents in an intrusion detection system: Reputation, Stochastic, and Maximum Cover. These three movement models are tested for effectiveness in locating good agent vantage points within the network to classify the state of the network. MFIREv3 also introduces the design of defensive measures to limit the effects of network attacks. Defensive measures included in this research are rate-limiting and elimination of infected nodes. The results of this research provide an optimistic outlook for flow-based multi-agent systems for cyber security. The impact of this research illustrates how feature selection in cooperation with movement models for multi agent systems provides excellent attack detection and classification

    Multiagent Systems for Network Intrusion Detection: A Review

    Get PDF
    More and more, Intrusion Detection Systems (IDSs) are seen as an important component in comprehensive security solutions. Thus, IDSs are common elements in modern infrastructures to enforce network policies. So far, plenty of techniques have been applied for the detection of intrusions, which has been reported in many surveys. This work focuses the development of network-based IDSs from an architectural point of view, in which multiagent systems are applied for the development of IDSs, presenting an up-to-date revision of the state of the art

    An adaptive Markov strategy for effective network intrusion detection

    Get PDF

    Patrolling security games: Definition and algorithms for solving largeinstances with single patroller and single intruder

    Get PDF
    Security games are gaining significant interest in artificial intelligence. They are characterized by two players (a defender and an attacker) and by a set of targets the defender tries to protect from the attacker\u2bcs intrusions by committing to a strategy. To reach their goals, players use resources such as patrollers and intruders. Security games are Stackelberg games where the appropriate solution concept is the leader\u2013follower equilibrium. Current algorithms for solving these games are applicable when the underlying game is in normal form (i.e., each player has a single decision node). In this paper, we define and study security games with an extensive-form infinite-horizon underlying game, where decision nodes are potentially infinite. We introduce a novel scenario where the attacker can undertake actions during the execution of the defender\u2bcs strategy. We call this new game class patrolling security games (PSGs), since its most prominent application is patrolling environments against intruders. We show that PSGs cannot be reduced to security games studied so far and we highlight their generality in tackling adversarial patrolling on arbitrary graphs. We then design algorithms to solve large instances with single patroller and single intruder
    corecore