10,370 research outputs found

    ICT enabled approach for humanitarian disaster management: a systems perspective

    Get PDF
    Purpose Each stage in disaster management faces different challenges concerning information gathering, sharing, interpretation and dissemination. However, a comprehensive understanding of different information and communication technology (ICT) systems utilised for humanitarian disaster management is limited. Therefore, the paper follows a systems thinking approach to examine ten major man-made and/or natural disasters to comprehend the influence of ICT systems on humanitarian relief operations. Design/methodology/approach A longitudinal, multi-case study captures the use of ICT tools, stakeholders involvement, disaster stages and zones of operations for relief operations over the past two decades. A systems thinking approach is utilised to draw several inferences and develop frameworks. Findings Multiple ICT tools such as geographic information systems, online webpages/search engines, social media, unmanned aerial vehicles/robots and artificial intelligence are used for rapid disaster response and mitigation. Speed and coordination of relief operations have significantly increased in recent years due to the increased use of ICT systems. Research limitations/implications Secondary data on the past ten disasters is utilised to draw inferences. The developed ICT-driven model must be validated during upcoming humanitarian relief operations. Practical implications A holistic understanding of a complex inter-relationship between influential variables (stakeholders, disaster stages, zones of operation, ICT systems) is beneficial for effectively managing humanitarian disasters. Originality/value Broadly classifying the ICT systems into surveillance, decision support and broadcasting systems, a novel ICT-enabled model for humanitarian relief operations is developed

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Key technologies for safe and autonomous drones

    Get PDF
    Drones/UAVs are able to perform air operations that are very difficult to be performed by manned aircrafts. In addition, drones' usage brings significant economic savings and environmental benefits, while reducing risks to human life. In this paper, we present key technologies that enable development of drone systems. The technologies are identified based on the usages of drones (driven by COMP4DRONES project use cases). These technologies are grouped into four categories: U-space capabilities, system functions, payloads, and tools. Also, we present the contributions of the COMP4DRONES project to improve existing technologies. These contributions aim to ease drones’ customization, and enable their safe operation.This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands. The total project budget is 28,590,748.75 EUR (excluding ESIF partners), while the requested grant is 7,983,731.61 EUR to ECSEL JU, and 8,874,523.84 EUR of National and ESIF Funding. The project has been started on 1st October 2019

    Improved wolf swarm optimization with deep-learning-based movement analysis and self-regulated human activity recognition

    Get PDF
    A wide variety of applications like patient monitoring, rehabilitation sensing, sports and senior surveillance require a considerable amount of knowledge in recognizing physical activities of a person captured using sensors. The goal of human activity recognition is to identify human activities from a collection of observations based on the behavior of subjects and the surrounding circumstances. Movement is examined in psychology, biomechanics, artificial intelligence and neuroscience. To be specific, the availability of pervasive devices and the low cost to record movements with machine learning (ML) techniques for the automatic and quantitative analysis of movement have resulted in the growth of systems for rehabilitation monitoring, user authentication and medical diagnosis. The self-regulated detection of human activities from time-series smartphone sensor datasets is a growing study area in intelligent and smart healthcare. Deep learning (DL) techniques have shown enhancements compared to conventional ML methods in many fields, which include human activity recognition (HAR). This paper presents an improved wolf swarm optimization with deep learning based movement analysis and self-regulated human activity recognition (IWSODL-MAHAR) technique. The IWSODL-MAHAR method aimed to recognize various kinds of human activities. Since high dimensionality poses a major issue in HAR, the IWSO algorithm is applied as a dimensionality reduction technique. In addition, the IWSODL-MAHAR technique uses a hybrid DL model for activity recognition. To further improve the recognition performance, a Nadam optimizer is applied as a hyperparameter tuning technique. The experimental evaluation of the IWSODL-MAHAR approach is assessed on benchmark activity recognition data. The experimental outcomes outlined the supremacy of the IWSODL-MAHAR algorithm compared to recent models

    Detecting Anomalous Microflows in IoT Volumetric Attacks via Dynamic Monitoring of MUD Activity

    Full text link
    IoT networks are increasingly becoming target of sophisticated new cyber-attacks. Anomaly-based detection methods are promising in finding new attacks, but there are certain practical challenges like false-positive alarms, hard to explain, and difficult to scale cost-effectively. The IETF recent standard called Manufacturer Usage Description (MUD) seems promising to limit the attack surface on IoT devices by formally specifying their intended network behavior. In this paper, we use SDN to enforce and monitor the expected behaviors of each IoT device, and train one-class classifier models to detect volumetric attacks. Our specific contributions are fourfold. (1) We develop a multi-level inferencing model to dynamically detect anomalous patterns in network activity of MUD-compliant traffic flows via SDN telemetry, followed by packet inspection of anomalous flows. This provides enhanced fine-grained visibility into distributed and direct attacks, allowing us to precisely isolate volumetric attacks with microflow (5-tuple) resolution. (2) We collect traffic traces (benign and a variety of volumetric attacks) from network behavior of IoT devices in our lab, generate labeled datasets, and make them available to the public. (3) We prototype a full working system (modules are released as open-source), demonstrates its efficacy in detecting volumetric attacks on several consumer IoT devices with high accuracy while maintaining low false positives, and provides insights into cost and performance of our system. (4) We demonstrate how our models scale in environments with a large number of connected IoTs (with datasets collected from a network of IP cameras in our university campus) by considering various training strategies (per device unit versus per device type), and balancing the accuracy of prediction against the cost of models in terms of size and training time.Comment: 18 pages, 13 figure

    Intelligent computing : the latest advances, challenges and future

    Get PDF
    Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Deep Transfer Learning Applications in Intrusion Detection Systems: A Comprehensive Review

    Full text link
    Globally, the external Internet is increasingly being connected to the contemporary industrial control system. As a result, there is an immediate need to protect the network from several threats. The key infrastructure of industrial activity may be protected from harm by using an intrusion detection system (IDS), a preventive measure mechanism, to recognize new kinds of dangerous threats and hostile activities. The most recent artificial intelligence (AI) techniques used to create IDS in many kinds of industrial control networks are examined in this study, with a particular emphasis on IDS-based deep transfer learning (DTL). This latter can be seen as a type of information fusion that merge, and/or adapt knowledge from multiple domains to enhance the performance of the target task, particularly when the labeled data in the target domain is scarce. Publications issued after 2015 were taken into account. These selected publications were divided into three categories: DTL-only and IDS-only are involved in the introduction and background, and DTL-based IDS papers are involved in the core papers of this review. Researchers will be able to have a better grasp of the current state of DTL approaches used in IDS in many different types of networks by reading this review paper. Other useful information, such as the datasets used, the sort of DTL employed, the pre-trained network, IDS techniques, the evaluation metrics including accuracy/F-score and false alarm rate (FAR), and the improvement gained, were also covered. The algorithms, and methods used in several studies, or illustrate deeply and clearly the principle in any DTL-based IDS subcategory are presented to the reader

    Learning disentangled speech representations

    Get PDF
    A variety of informational factors are contained within the speech signal and a single short recording of speech reveals much more than the spoken words. The best method to extract and represent informational factors from the speech signal ultimately depends on which informational factors are desired and how they will be used. In addition, sometimes methods will capture more than one informational factor at the same time such as speaker identity, spoken content, and speaker prosody. The goal of this dissertation is to explore different ways to deconstruct the speech signal into abstract representations that can be learned and later reused in various speech technology tasks. This task of deconstructing, also known as disentanglement, is a form of distributed representation learning. As a general approach to disentanglement, there are some guiding principles that elaborate what a learned representation should contain as well as how it should function. In particular, learned representations should contain all of the requisite information in a more compact manner, be interpretable, remove nuisance factors of irrelevant information, be useful in downstream tasks, and independent of the task at hand. The learned representations should also be able to answer counter-factual questions. In some cases, learned speech representations can be re-assembled in different ways according to the requirements of downstream applications. For example, in a voice conversion task, the speech content is retained while the speaker identity is changed. And in a content-privacy task, some targeted content may be concealed without affecting how surrounding words sound. While there is no single-best method to disentangle all types of factors, some end-to-end approaches demonstrate a promising degree of generalization to diverse speech tasks. This thesis explores a variety of use-cases for disentangled representations including phone recognition, speaker diarization, linguistic code-switching, voice conversion, and content-based privacy masking. Speech representations can also be utilised for automatically assessing the quality and authenticity of speech, such as automatic MOS ratings or detecting deep fakes. The meaning of the term "disentanglement" is not well defined in previous work, and it has acquired several meanings depending on the domain (e.g. image vs. speech). Sometimes the term "disentanglement" is used interchangeably with the term "factorization". This thesis proposes that disentanglement of speech is distinct, and offers a viewpoint of disentanglement that can be considered both theoretically and practically
    • …
    corecore