275 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationImage segmentation entails the partitioning of an image domain, usually two or three dimensions, so that each partition or segment has some meaning that is relevant to the application at hand. Accurate image segmentation is a crucial challenge in many disciplines, including medicine, computer vision, and geology. In some applications, heterogeneous pixel intensities; noisy, ill-defined, or diffusive boundaries; and irregular shapes with high variability can make it challenging to meet accuracy requirements. Various segmentation approaches tackle such challenges by casting the segmentation problem as an energy-minimization problem, and solving it using efficient optimization algorithms. These approaches are broadly classified as either region-based or edge (surface)-based depending on the features on which they operate. The focus of this dissertation is on the development of a surface-based energy model, the design of efficient formulations of optimization frameworks to incorporate such energy, and the solution of the energy-minimization problem using graph cuts. This dissertation utilizes a set of four papers whose motivation is the efficient extraction of the left atrium wall from the late gadolinium enhancement magnetic resonance imaging (LGE-MRI) image volume. This dissertation utilizes these energy formulations for other applications, including contact lens segmentation in the optical coherence tomography (OCT) data and the extraction of geologic features in seismic data. Chapters 2 through 5 (papers 1 through 4) explore building a surface-based image segmentation model by progressively adding components to improve its accuracy and robustness. The first paper defines a parametric search space and its discrete formulation in the form of a multilayer three-dimensional mesh model within which the segmentation takes place. It includes a generative intensity model, and we optimize using a graph formulation of the surface net problem. The second paper proposes a Bayesian framework with a Markov random field (MRF) prior that gives rise to another class of surface nets, which provides better segmentation with smooth boundaries. The third paper presents a maximum a posteriori (MAP)-based surface estimation framework that relies on a generative image model by incorporating global shape priors, in addition to the MRF, within the Bayesian formulation. Thus, the resulting surface not only depends on the learned model of shapes,but also accommodates the test data irregularities through smooth deviations from these priors. Further, the paper proposes a new shape parameter estimation scheme, in closed form, for segmentation as a part of the optimization process. Finally, the fourth paper (under review at the time of this document) presents an extensive analysis of the MAP framework and presents improved mesh generation and generative intensity models. It also performs a thorough analysis of the segmentation results that demonstrates the effectiveness of the proposed method qualitatively, quantitatively, and clinically. Chapter 6, consisting of unpublished work, demonstrates the application of an MRF-based Bayesian framework to segment coupled surfaces of contact lenses in optical coherence tomography images. This chapter also shows an application related to the extraction of geological structures in seismic volumes. Due to the large sizes of seismic volume datasets, we also present fast, approximate surface-based energy minimization strategies that achieve better speed-ups and memory consumption

    Medical Image Analysis on Left Atrial LGE MRI for Atrial Fibrillation Studies: A Review

    Full text link
    Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is commonly used to visualize and quantify left atrial (LA) scars. The position and extent of scars provide important information of the pathophysiology and progression of atrial fibrillation (AF). Hence, LA scar segmentation and quantification from LGE MRI can be useful in computer-assisted diagnosis and treatment stratification of AF patients. Since manual delineation can be time-consuming and subject to intra- and inter-expert variability, automating this computing is highly desired, which nevertheless is still challenging and under-researched. This paper aims to provide a systematic review on computing methods for LA cavity, wall, scar and ablation gap segmentation and quantification from LGE MRI, and the related literature for AF studies. Specifically, we first summarize AF-related imaging techniques, particularly LGE MRI. Then, we review the methodologies of the four computing tasks in detail, and summarize the validation strategies applied in each task. Finally, the possible future developments are outlined, with a brief survey on the potential clinical applications of the aforementioned methods. The review shows that the research into this topic is still in early stages. Although several methods have been proposed, especially for LA segmentation, there is still large scope for further algorithmic developments due to performance issues related to the high variability of enhancement appearance and differences in image acquisition.Comment: 23 page

    Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention

    Get PDF
    Three-dimensional late gadolinium enhanced (LGE) cardiac MR (CMR) of left atrial scar in patients with atrial fibrillation (AF) has recently emerged as a promising technique to stratify patients, to guide ablation therapy and to predict treatment success. This requires a segmentation of the high intensity scar tissue and also a segmentation of the left atrium (LA) anatomy, the latter usually being derived from a separate bright-blood acquisition. Performing both segmentations automatically from a single 3D LGE CMR acquisition would eliminate the need for an additional acquisition and avoid subsequent registration issues. In this paper, we propose a joint segmentation method based on multiview two-task (MVTT) recursive attention model working directly on 3D LGE CMR images to segment the LA (and proximal pulmonary veins) and to delineate the scar on the same dataset. Using our MVTT recursive attention model, both the LA anatomy and scar can be segmented accurately (mean Dice score of 93% for the LA anatomy and 87% for the scar segmentations) and efficiently (0.27 s to simultaneously segment the LA anatomy and scars directly from the 3D LGE CMR dataset with 60–68 2D slices). Compared to conventional unsupervised learning and other state-of-the-art deep learning based methods, the proposed MVTT model achieved excellent results, leading to an automatic generation of a patient-specific anatomical model combined with scar segmentation for patients in AF

    Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images

    Get PDF
    Studies have demonstrated the feasibility of late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging for guiding the management of patients with sequelae to myocardial infarction, such as ventricular tachycardia and heart failure. Clinical implementation of these developments necessitates a reproducible and reliable segmentation of the infarcted regions. It is challenging to compare new algorithms for infarct segmentation in the left ventricle (LV) with existing algorithms. Benchmarking datasets with evaluation strategies are much needed to facilitate comparison. This manuscript presents a benchmarking evaluation framework for future algorithms that segment infarct from LGE CMR of the LV. The image database consists of 30 LGE CMR images of both humans and pigs that were acquired from two separate imaging centres. A consensus ground truth was obtained for all data using maximum likelihood estimation. Six widely-used fixed-thresholding methods and five recently developed algorithms are tested on the benchmarking framework. Results demonstrate that the algorithms have better overlap with the consensus ground truth than most of the n-SD fixed-thresholding methods, with the exception of the FullWidth-at-Half-Maximum (FWHM) fixed-thresholding method. Some of the pitfalls of fixed thresholding methods are demonstrated in this work. The benchmarking evaluation framework, which is a contribution of this work, can be used to test and benchmark future algorithms that detect and quantify infarct in LGE CMR images of the LV. The datasets, ground truth and evaluation code have been made publicly available through the website: https://www.cardiacatlas.org/web/guest/challenges

    Rapid Segmentation Techniques for Cardiac and Neuroimage Analysis

    Get PDF
    Recent technological advances in medical imaging have allowed for the quick acquisition of highly resolved data to aid in diagnosis and characterization of diseases or to guide interventions. In order to to be integrated into a clinical work flow, accurate and robust methods of analysis must be developed which manage this increase in data. Recent improvements in in- expensive commercially available graphics hardware and General-Purpose Programming on Graphics Processing Units (GPGPU) have allowed for many large scale data analysis problems to be addressed in meaningful time and will continue to as parallel computing technology improves. In this thesis we propose methods to tackle two clinically relevant image segmentation problems: a user-guided segmentation of myocardial scar from Late-Enhancement Magnetic Resonance Images (LE-MRI) and a multi-atlas segmentation pipeline to automatically segment and partition brain tissue from multi-channel MRI. Both methods are based on recent advances in computer vision, in particular max-flow optimization that aims at solving the segmentation problem in continuous space. This allows for (approximately) globally optimal solvers to be employed in multi-region segmentation problems, without the particular drawbacks of their discrete counterparts, graph cuts, which typically present with metrication artefacts. Max-flow solvers are generally able to produce robust results, but are known for being computationally expensive, especially with large datasets, such as volume images. Additionally, we propose two new deformable registration methods based on Gauss-Newton optimization and smooth the resulting deformation fields via total-variation regularization to guarantee the problem is mathematically well-posed. We compare the performance of these two methods against four highly ranked and well-known deformable registration methods on four publicly available databases and are able to demonstrate a highly accurate performance with low run times. The best performing variant is subsequently used in a multi-atlas segmentation pipeline for the segmentation of brain tissue and facilitates fast run times for this computationally expensive approach. All proposed methods are implemented using GPGPU for a substantial increase in computational performance and so facilitate deployment into clinical work flows. We evaluate all proposed algorithms in terms of run times, accuracy, repeatability and errors arising from user interactions and we demonstrate that these methods are able to outperform established methods. The presented approaches demonstrate high performance in comparison with established methods in terms of accuracy and repeatability while largely reducing run times due to the employment of GPU hardware

    Automatic segmentation of wall structures from cardiac images

    Get PDF
    One important topic in medical image analysis is segmenting wall structures from different cardiac medical imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). This task is typically done by radiologists either manually or semi-automatically, which is a very time-consuming process. To reduce the laborious human efforts, automatic methods have become popular in this research. In this thesis, features insensitive to data variations are explored to segment the ventricles from CT images and extract the left atrium from MR images. As applications, the segmentation results are used to facilitate cardiac disease analysis. Specifically, 1. An automatic method is proposed to extract the ventricles from CT images by integrating surface decomposition with contour evolution techniques. In particular, the ventricles are first identified on a surface extracted from patient-specific image data. Then, the contour evolution is employed to refine the identified ventricles. The proposed method is robust to variations of ventricle shapes, volume coverages, and image quality. 2. A variational region-growing method is proposed to segment the left atrium from MR images. Because of the localized property of this formulation, the proposed method is insensitive to data variabilities that are hard to handle by globalized methods. 3. In applications, a geometrical computational framework is proposed to estimate the myocardial mass at risk caused by stenoses. In addition, the segmentation of the left atrium is used to identify scars for MR images of post-ablation.PhDCommittee Chair: Yezzi, Anthony; Committee Co-Chair: Tannenbaum, Allen; Committee Member: Egerstedt, Magnus ; Committee Member: Fedele, Francesco ; Committee Member: Stillman, Arthur; Committee Member: Vela,Patrici
    • …
    corecore