2,794 research outputs found

    Full 3D Quantum Transport Simulation of Atomistic Interface Roughness in Silicon Nanowire FETs

    Full text link
    The influence of interface roughness scattering (IRS) on the performances of silicon nanowire field-effect transistors (NWFETs) is numerically investigated using a full 3D quantum transport simulator based on the atomistic sp3d5s* tight-binding model. The interface between the silicon and the silicon dioxide layers is generated in a real-space atomistic representation using an experimentally derived autocovariance function (ACVF). The oxide layer is modeled in the virtual crystal approximation (VCA) using fictitious SiO2 atoms. -oriented nanowires with different diameters and randomly generated surface configurations are studied. The experimentally observed ON-current and the threshold voltage is quantitatively captured by the simulation model. The mobility reduction due to IRS is studied through a qualitative comparison of the simulation results with the experimental results

    Efficient and realistic device modeling from atomic detail to the nanoscale

    Full text link
    As semiconductor devices scale to new dimensions, the materials and designs become more dependent on atomic details. NEMO5 is a nanoelectronics modeling package designed for comprehending the critical multi-scale, multi-physics phenomena through efficient computational approaches and quantitatively modeling new generations of nanoelectronic devices as well as predicting novel device architectures and phenomena. This article seeks to provide updates on the current status of the tool and new functionality, including advances in quantum transport simulations and with materials such as metals, topological insulators, and piezoelectrics.Comment: 10 pages, 12 figure

    NEGF simulations of a junctionless Si gate-all-around nanowire transistor with discrete dopants

    Get PDF
    We have carried out 3D Non-Equilibrium Green Function simulations of ajunctionlessgate-all-around n-type silicon nanowiretransistor of 4.2 × 4.2 nm2 cross-section. We model the dopants in a fully atomistic way. The dopant distributions are randomly generated following an average doping concentration of 1020 cm−3. Elastic and inelastic phonon scattering is considered in our simulation. Considering the dopants in adiscrete way is the first step in the simulation of random dopant variability in junctionlesstransistors in a fully quantum mechanical way. Our results show that, for devices with an “unlucky” dopants configuration, where there is a starvation of donors under the gate, the threshold voltage can increase by a few hundred mV relative to devices with a more homogeneous distribution of dopants. For the first time we have used a quantum transport model with dissipation to evaluate the change in threshold voltage and subthreshold slope due to the discrete random donors in the channel of ajunctionlessnanowire nMOS transistor. These calculations require a robust convergence scheme between the quantum transport equation and the Poisson equation in order to achieve convergence in the dopant-induced resonance regime

    Thermal Transport Across Graphene Step Junctions

    Get PDF
    Step junctions are often present in layered materials, i.e. where single-layer regions meet multi-layer regions, yet their effect on thermal transport is not understood to date. Here, we measure heat flow across graphene junctions (GJs) from monolayer to bilayer graphene, as well as bilayer to four-layer graphene for the first time, in both heat flow directions. The thermal conductance of the monolayer-bilayer GJ device ranges from ~0.5 to 9.1x10^8 Wm-2K-1 between 50 K to 300 K. Atomistic simulations of such GJ device reveal that graphene layers are relatively decoupled, and the low thermal conductance of the device is determined by the resistance between the two dis-tinct graphene layers. In these conditions the junction plays a negligible effect. To prove that the decoupling between layers controls thermal transport in the junction, the heat flow in both directions was measured, showing no evidence of thermal asymmetry or rectification (within experimental error bars). For large-area graphene applications, this signifies that small bilayer (or multilayer) islands have little or no contribution to overall thermal transport
    • 

    corecore