25,113 research outputs found

    Topological Birkhoff

    Full text link
    One of the most fundamental mathematical contributions of Garrett Birkhoff is the HSP theorem, which implies that a finite algebra B satisfies all equations that hold in a finite algebra A of the same signature if and only if B is a homomorphic image of a subalgebra of a finite power of A. On the other hand, if A is infinite, then in general one needs to take an infinite power in order to obtain a representation of B in terms of A, even if B is finite. We show that by considering the natural topology on the functions of A and B in addition to the equations that hold between them, one can do with finite powers even for many interesting infinite algebras A. More precisely, we prove that if A and B are at most countable algebras which are oligomorphic, then the mapping which sends each function from A to the corresponding function in B preserves equations and is continuous if and only if B is a homomorphic image of a subalgebra of a finite power of A. Our result has the following consequences in model theory and in theoretical computer science: two \omega-categorical structures are primitive positive bi-interpretable if and only if their topological polymorphism clones are isomorphic. In particular, the complexity of the constraint satisfaction problem of an \omega-categorical structure only depends on its topological polymorphism clone.Comment: 21 page

    An Algebraic Preservation Theorem for Aleph-Zero Categorical Quantified Constraint Satisfaction

    Full text link
    We prove an algebraic preservation theorem for positive Horn definability in aleph-zero categorical structures. In particular, we define and study a construction which we call the periodic power of a structure, and define a periomorphism of a structure to be a homomorphism from the periodic power of the structure to the structure itself. Our preservation theorem states that, over an aleph-zero categorical structure, a relation is positive Horn definable if and only if it is preserved by all periomorphisms of the structure. We give applications of this theorem, including a new proof of the known complexity classification of quantified constraint satisfaction on equality templates

    Elementary Proof of Strong Normalization for Atomic F

    Get PDF
    We give an elementary proof (in the sense that it is formalizable in Peano arithmetic) of the strong normalization of the atomic polymorphic calculus Fₐₜ (a predicative restriction of Girard’s system F)

    On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction

    Full text link
    The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The first is that in finite or omega-categorical structures A, a relation is primitive positive definable if and only if it is preserved by the polymorphisms of A. The second is that every finite or omega-categorical structure is homomorphically equivalent to a core structure. In this paper, we present generalizations of these facts to infinite structures that are not necessarily omega-categorical. (This abstract has been severely curtailed by the space constraints of arXiv -- please read the full abstract in the article.) Finally, we present applications of our general results to the description and analysis of the complexity of CSPs. In particular, we give general hardness criteria based on the absence of polymorphisms that depend on more than one argument, and we present a polymorphism-based description of those CSPs that are first-order definable (and therefore can be solved in polynomial time).Comment: Extended abstract appeared at 25th Symposium on Logic in Computer Science (LICS 2010). This version will appear in the LMCS special issue associated with LICS 201
    corecore