1,339 research outputs found

    Atomic norm denoising with applications to line spectral estimation

    Get PDF
    Motivated by recent work on atomic norms in inverse problems, we propose a new approach to line spectral estimation that provides theoretical guarantees for the mean-squared-error (MSE) performance in the presence of noise and without knowledge of the model order. We propose an abstract theory of denoising with atomic norms and specialize this theory to provide a convex optimization problem for estimating the frequencies and phases of a mixture of complex exponentials. We show that the associated convex optimization problem can be solved in polynomial time via semidefinite programming (SDP). We also show that the SDP can be approximated by an l1-regularized least-squares problem that achieves nearly the same error rate as the SDP but can scale to much larger problems. We compare both SDP and l1-based approaches with classical line spectral analysis methods and demonstrate that the SDP outperforms the l1 optimization which outperforms MUSIC, Cadzow's, and Matrix Pencil approaches in terms of MSE over a wide range of signal-to-noise ratios.Comment: 27 pages, 10 figures. A preliminary version of this work appeared in the Proceedings of the 49th Annual Allerton Conference in September 2011. Numerous numerical experiments added to this version in accordance with suggestions by anonymous reviewer

    Off-the-Grid Line Spectrum Denoising and Estimation with Multiple Measurement Vectors

    Full text link
    Compressed Sensing suggests that the required number of samples for reconstructing a signal can be greatly reduced if it is sparse in a known discrete basis, yet many real-world signals are sparse in a continuous dictionary. One example is the spectrally-sparse signal, which is composed of a small number of spectral atoms with arbitrary frequencies on the unit interval. In this paper we study the problem of line spectrum denoising and estimation with an ensemble of spectrally-sparse signals composed of the same set of continuous-valued frequencies from their partial and noisy observations. Two approaches are developed based on atomic norm minimization and structured covariance estimation, both of which can be solved efficiently via semidefinite programming. The first approach aims to estimate and denoise the set of signals from their partial and noisy observations via atomic norm minimization, and recover the frequencies via examining the dual polynomial of the convex program. We characterize the optimality condition of the proposed algorithm and derive the expected convergence rate for denoising, demonstrating the benefit of including multiple measurement vectors. The second approach aims to recover the population covariance matrix from the partially observed sample covariance matrix by motivating its low-rank Toeplitz structure without recovering the signal ensemble. Performance guarantee is derived with a finite number of measurement vectors. The frequencies can be recovered via conventional spectrum estimation methods such as MUSIC from the estimated covariance matrix. Finally, numerical examples are provided to validate the favorable performance of the proposed algorithms, with comparisons against several existing approaches.Comment: 14 pages, 10 figure

    Compressive Estimation of a Stochastic Process with Unknown Autocorrelation Function

    Full text link
    In this paper, we study the prediction of a circularly symmetric zero-mean stationary Gaussian process from a window of observations consisting of finitely many samples. This is a prevalent problem in a wide range of applications in communication theory and signal processing. Due to stationarity, when the autocorrelation function or equivalently the power spectral density (PSD) of the process is available, the Minimum Mean Squared Error (MMSE) predictor is readily obtained. In particular, it is given by a linear operator that depends on autocorrelation of the process as well as the noise power in the observed samples. The prediction becomes, however, quite challenging when the PSD of the process is unknown. In this paper, we propose a blind predictor that does not require the a priori knowledge of the PSD of the process and compare its performance with that of an MMSE predictor that has a full knowledge of the PSD. To design such a blind predictor, we use the random spectral representation of a stationary Gaussian process. We apply the well-known atomic-norm minimization technique to the observed samples to obtain a discrete quantization of the underlying random spectrum, which we use to predict the process. Our simulation results show that this estimator has a good performance comparable with that of the MMSE estimator.Comment: 6 pages, 4 figures. Accepted for presentation in ISIT 2017, Aachen, German
    • …
    corecore