303,520 research outputs found

    A New Technique for Detecting Supersymmetric Dark Matter

    Full text link
    We estimate the event rate for excitation of atomic transition by photino-like dark matter. For excitations of several eV, this event rate can exceed naive cross-section by many orders of magnitude. Although the event rate for these atomic excitation is smaller than that of nuclear recoil off of non-zero spin nuclei, the photons emitted by the deexcitation are easier to detect than low-energy nuclear recoils. For many elements, there are several low-lying states with comparable excitation rates, thus, spectral ratios could be used to distinguish signal from background.Comment: 6 pages plain te

    Mass and charge identification of fragments detected with the Chimera Silicon-CsI(Tl) telescopes

    Full text link
    Mass and charge identification of charged products detected with Silicon-CsI(Tl) telescopes of the Chimera apparatus is presented. An identification function, based on the Bethe-Bloch formula, is used to fit empirical correlation between Delta E and E ADC readings, in order to determine, event by event, the atomic and mass numbers of the detected charged reaction products prior to energy calibration.Comment: 24 pages, 7 .jpg figures, submitted to Nucl.Instr.

    Atomic components

    Get PDF
    There has been much interest in components that combine the best of state-based and event-based approaches. The interface of a component can be thought of as its specification and substituting components with the same interface cannot be observed by any user of the components. Here we will define the semantics of atomic components where both states and event can be part of the interface. The resulting semantics is very similar to that of (event only) processes. But it has two main novelties: one, it does not need recursion or unique fixed points to model nontermination; and two, the behaviour of divergence is modelled by abstraction, i.e. the construction of the observational semantics

    Contact Interactions and high Q2Q^2 Events at HERA

    Get PDF
    Effective eeqqeeqq contact interactions can enhance event rates in e+pe^+p scattering at HERA at high Q2Q^2. Present constraints from atomic parity violation measurements and from Drell Yan events at the Tevatron are discussed.Comment: 3 pages, Latex, Talk given at 5th International Workshop on Deep Inelastic Scattering and QCD, Chicago, Illinois, USA, 14-18 April 199

    Motion as manipulation: Implementation of motion and force analogies by event-file binding and action planning\ud

    Get PDF
    Tool improvisation analogies are a special case of motion and force analogies that appear to be implemented pre-conceptually, in many species, by event-file binding and action planning. A detailed reconstruction of the analogical reasoning steps involved in Rutherford's and Bohr's development of the first quantized-orbit model of atomic structure is used to show that human motion and force analogies generally can be implemented by the event-file binding and action planning mechanism. Predictions that distinguish this model from competing concept-level models of analogy are discussed, available data pertaining to them are reviewed, and further experimental tests are proposed

    Dense-ATOMIC: Towards Densely-connected ATOMIC with High Knowledge Coverage and Massive Multi-hop Paths

    Full text link
    ATOMIC is a large-scale commonsense knowledge graph (CSKG) containing everyday if-then knowledge triplets, i.e., {head event, relation, tail event}. The one-hop annotation manner made ATOMIC a set of independent bipartite graphs, which ignored the numerous links between events in different bipartite graphs and consequently caused shortages in knowledge coverage and multi-hop paths. In this work, we aim to construct Dense-ATOMIC with high knowledge coverage and massive multi-hop paths. The events in ATOMIC are normalized to a consistent pattern at first. We then propose a CSKG completion method called Rel-CSKGC to predict the relation given the head event and the tail event of a triplet, and train a CSKG completion model based on existing triplets in ATOMIC. We finally utilize the model to complete the missing links in ATOMIC and accordingly construct Dense-ATOMIC. Both automatic and human evaluation on an annotated subgraph of ATOMIC demonstrate the advantage of Rel-CSKGC over strong baselines. We further conduct extensive evaluations on Dense-ATOMIC in terms of statistics, human evaluation, and simple downstream tasks, all proving Dense-ATOMIC's advantages in Knowledge Coverage and Multi-hop Paths. Both the source code of Rel-CSKGC and Dense-ATOMIC are publicly available on https://github.com/NUSTM/Dense-ATOMIC.Comment: Accepted by ACL 2023 Main Conferenc

    Single spontaneous photon as a coherent beamsplitter for an atomic matterwave

    Full text link
    In spontaneous emission an atom in an excited state undergoes a transition to the ground state and emits a single photon. Associated with the emission is a change of the atomic momentum due to photon recoil. Photon emission can be modified close to surfaces and in cavities. For an ion, localized in front of a mirror, coherence of the emitted resonance fluorescence has been reported. In free space experiments demonstrated that spontaneous emission destroys motional coherence. Here we report on motional coherence created by a single spontaneous emission event close to a mirror surface. The coherence in the free atomic motion is verified by atom interferometry. The photon can be regarded as a beamsplitter for an atomic matterwave and consequently our experiment extends the original recoiling slit Gedanken experiment by Einstein to the case where the slit is in a robust coherent superposition of the two recoils associated with the two paths of the quanta.Comment: main text: 5 pages, 4 figure; supplementary information: 8 pages, 1 figur
    corecore