142,878 research outputs found

    A tutorial task and tertiary courseware model for collaborative learning communities

    Get PDF
    RAED provides a computerised infrastructure to support the development and administration of Vicarious Learning in collaborative learning communities spread across multiple universities and workplaces. The system is based on the OASIS middleware for Role-based Access Control. This paper describes the origins of the model and the approach to implementation and outlines some of its benefits to collaborative teachers and learners

    Designer quantum states of matter created atom-by-atom

    Full text link
    With the advances in high resolution and spin-resolved scanning tunneling microscopy as well as atomic-scale manipulation, it has become possible to create and characterize quantum states of matter bottom-up, atom-by-atom. This is largely based on controlling the particle- or wave-like nature of electrons, as well as the interactions between spins, electrons, and orbitals and their interplay with structure and dimensionality. We review the recent advances in creating artificial electronic and spin lattices that lead to various exotic quantum phases of matter, ranging from topological Dirac dispersion to complex magnetic order. We also project future perspectives in non-equilibrium dynamics, prototype technologies, engineered quantum phase transitions and topology, as well as the evolution of complexity from simplicity in this newly developing field

    Transport dynamics of ultracold atoms in a triple-well transistor-like potential

    Get PDF
    The transport of atoms is experimentally studied in a transistor-like triple-well potential consisting of a narrow gate well surrounded by source and drain wells. Atoms are initially loaded into the source well with pre-determined temperature and chemical potential. Energetic atoms flow from the source, across the gate, and into the drain where they are removed using a resonant light beam. The manifestation of atom-atom interactions and dissipation is evidenced by a rapid population growth in the initially vacant gate well. The transport dynamics are shown to depend strongly on a feedback parameter determined by the relative heights of the two barriers forming the gate region. For a range of feedback parameter values, experiments establish that the gate atoms develop a larger chemical potential and lower temperature than those in the source.Comment: 13 pages, 5 figures, accepted for publication in NJ

    Measurement Protocol for the Entanglement Spectrum of Cold Atoms

    Full text link
    Entanglement, and, in particular the entanglement spectrum, plays a major role in characterizing many-body quantum systems. While there has been a surge of theoretical works on the subject, no experimental measurement has been performed to date because of the lack of an implementable measurement scheme. Here, we propose a measurement protocol to access the entanglement spectrum of many-body states in experiments with cold atoms in optical lattices. Our scheme effectively performs a Ramsey spectroscopy of the entanglement Hamiltonian and is based on the ability to produce several copies of the state under investigation together with the possibility to perform a global swap gate between two copies conditioned on the state of an auxiliary qubit. We show how the required conditional swap gate can be implemented with cold atoms, either by using Rydberg interactions or coupling the atoms to a cavity mode. We illustrate these ideas on a simple (extended) Bose-Hubbard model where such a measurement protocol reveals topological features of the Haldane phase

    SFDL: MVC Applied to Workflow Design

    Get PDF
    Process management based on workflow systems is a growing trend in collaborative environments. One of the most notorious areas of improvement is that of user interfaces, especially since business process definition languages do not address efficiently the point of contact between workflow engines and human interactions. With that in focus, we propose the MVC pattern design to workflow systems. To accomplish this, we have designed a new dynamic view definition language called SFDL, oriented towards the easy interoperability with the different workflow definition languages, while maintaining enough flexibility to be represented in different formats and being adaptable to several environments. To validate our approach, we have carried out an implementation in a real banking scenario, which has provided continuous feedback and enabled us to refine the proposal. The work is fully based on widely accepted and used web standards (XML, YAML, JSON, Atom and REST). Some guidelines are given to facilitate the adoption of our solution

    Wireless network control of interacting Rydberg atoms

    Get PDF
    We identify a relation between the dynamics of ultracold Rydberg gases in which atoms experience a strong dipole blockade and spontaneous emission, and a stochastic process that models certain wireless random-access networks. We then transfer insights and techniques initially developed for these wireless networks to the realm of Rydberg gases, and explain how the Rydberg gas can be driven into crystal formations using our understanding of wireless networks. Finally, we propose a method to determine Rabi frequencies (laser intensities) such that particles in the Rydberg gas are excited with specified target excitation probabilities, providing control over mixed-state populations.Comment: 6 pages, 7 figures; includes corrections and improvements from the peer-review proces

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP

    Quantum Many-Body Phenomena in Coupled Cavity Arrays

    Full text link
    The increasing level of experimental control over atomic and optical systems gained in the past years have paved the way for the exploration of new physical regimes in quantum optics and atomic physics, characterised by the appearance of quantum many-body phenomena, originally encountered only in condensed-matter physics, and the possibility of experimentally accessing them in a more controlled manner. In this review article we survey recent theoretical studies concerning the use of cavity quantum electrodynamics to create quantum many-body systems. Based on recent experimental progress in the fabrication of arrays of interacting micro-cavities and on their coupling to atomic-like structures in several different physical architectures, we review proposals on the realisation of paradigmatic many-body models in such systems, such as the Bose-Hubbard and the anisotropic Heisenberg models. Such arrays of coupled cavities offer interesting properties as simulators of quantum many-body physics, including the full addressability of individual sites and the accessibility of inhomogeneous models.Comment: overview article, 27 pages, 31 figure

    Core TuLiP

    Get PDF
    We propose CoreTuLiP - the core of a trust management language based on Logic Programming. CoreTuLiP is based on a subset of moded logic programming, but enjoys the features of TM languages such as RT; in particular clauses are issued by different authorities and stored in a distributed manner. We present a lookup and inference algorithm which we prove to be correct and complete w.r.t. the declarative semantics. CoreTuLiP enjoys uniform syntax and the well-established semantics and is expressive enough to model scenarios which are hard to deal with in RT
    corecore