2,392 research outputs found

    Infering Air Quality from Traffic Data using Transferable Neural Network Models

    Get PDF
    This work presents a neural network based model for inferring air quality from traffic measurements. It is important to obtain information on air quality in urban environments in order to meet legislative and policy requirements. Measurement equipment tends to be expensive to purchase and maintain. Therefore, a model based approach capable of accurate determination of pollution levels is highly beneficial. The objective of this study was to develop a neural network model to accurately infer pollution levels from existing data sources in Leicester, UK. Neural Networks are models made of several highly interconnected processing elements. These elements process information by their dynamic state response to inputs. Problems which were not solvable by traditional algorithmic approaches frequently can be solved using neural networks. This paper shows that using a simple neural network with traffic and meteorological data as inputs, the air quality can be estimated with a good level of generalisation and in near real-time. By applying these models to links rather than nodes, this methodology can directly be used to inform traffic engineers and direct traffic management decisions towards enhancing local air quality and traffic management simultaneously.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Data Mining for Source Apportionment of Trace Elements in Water and Solid Matrix

    Get PDF
    Trace elements migrate among different environment bodies with the natural geochemical reactions, and impacted by human industrial, agricultural, and civil activities. High load of trace elements in water, river and lake sediment, soil and air particle lead to potential to health of human being and ecological system. To control the impact on environment, source apportionment is a meaningful, and also a challenging task. Traditional methods to make source apportionment are usually based on geochemical techniques, or univariate analysis techniques. In recently years, the methods of multivariate analysis, and the related concepts data mining, machine learning, big data, are developing fast, which provide a novel route that combing the geochemical and data mining techniques together. These methods have been proved successful to deal with the source apportionment issue. In this chapter, the data mining methods used on this topic and implementations in recent years are reviewed. The basic method includes principal component analysis, factor analysis, clustering analysis, positive matrix fractionation, decision tree, Bayesian network, artificial neural network, etc. Source apportionment of trace elements in surface water, ground water, river and lake sediment, soil, air particles, dust are discussed

    Physics-Informed Deep Learning to Reduce the Bias in Joint Prediction of Nitrogen Oxides

    Full text link
    Atmospheric nitrogen oxides (NOx) primarily from fuel combustion have recognized acute and chronic health and environmental effects. Machine learning (ML) methods have significantly enhanced our capacity to predict NOx concentrations at ground-level with high spatiotemporal resolution but may suffer from high estimation bias since they lack physical and chemical knowledge about air pollution dynamics. Chemical transport models (CTMs) leverage this knowledge; however, accurate predictions of ground-level concentrations typically necessitate extensive post-calibration. Here, we present a physics-informed deep learning framework that encodes advection-diffusion mechanisms and fluid dynamics constraints to jointly predict NO2 and NOx and reduce ML model bias by 21-42%. Our approach captures fine-scale transport of NO2 and NOx, generates robust spatial extrapolation, and provides explicit uncertainty estimation. The framework fuses knowledge-driven physicochemical principles of CTMs with the predictive power of ML for air quality exposure, health, and policy applications. Our approach offers significant improvements over purely data-driven ML methods and has unprecedented bias reduction in joint NO2 and NOx prediction
    • …
    corecore