313 research outputs found

    Persons Versus Brains: Biological Intelligence in Human Organisms

    Get PDF
    I go deep into the biology of the human organism to argue that the psychological features and functions of persons are realized by cellular and molecular parallel distributed processing networks dispersed throughout the whole body. Persons supervene on the computational processes of nervous, endocrine, immune, and genetic networks. Persons do not go with brains

    Computational Logic for Biomedicine and Neurosciences

    Get PDF
    We advocate here the use of computational logic for systems biology, as a \emph{unified and safe} framework well suited for both modeling the dynamic behaviour of biological systems, expressing properties of them, and verifying these properties. The potential candidate logics should have a traditional proof theoretic pedigree (including either induction, or a sequent calculus presentation enjoying cut-elimination and focusing), and should come with certified proof tools. Beyond providing a reliable framework, this allows the correct encodings of our biological systems. % For systems biology in general and biomedicine in particular, we have so far, for the modeling part, three candidate logics: all based on linear logic. The studied properties and their proofs are formalized in a very expressive (non linear) inductive logic: the Calculus of Inductive Constructions (CIC). The examples we have considered so far are relatively simple ones; however, all coming with formal semi-automatic proofs in the Coq system, which implements CIC. In neuroscience, we are directly using CIC and Coq, to model neurons and some simple neuronal circuits and prove some of their dynamic properties. % In biomedicine, the study of multi omic pathway interactions, together with clinical and electronic health record data should help in drug discovery and disease diagnosis. Future work includes using more automatic provers. This should enable us to specify and study more realistic examples, and in the long term to provide a system for disease diagnosis and therapy prognosis

    Morphogenesis and Growth Driven by Selection of Dynamical Properties

    Full text link
    Organisms are understood to be complex adaptive systems that evolved to thrive in hostile environments. Though widely studied, the phenomena of organism development and growth, and their relationship to organism dynamics is not well understood. Indeed, the large number of components, their interconnectivity, and complex system interactions all obscure our ability to see, describe, and understand the functioning of biological organisms. Here we take a synthetic and computational approach to the problem, abstracting the organism as a cellular automaton. Such systems are discrete digital models of real-world environments, making them more accessible and easier to study then their physical world counterparts. In such simplified synthetic models, we find that the structure of the cellular network greatly impacts the dynamics of the organism as a whole. In the physical world, for example, the network property wherein some cells depend on phosphorus produces the cyclical boom-bust dynamics of algae on the surface of a pond. Using techniques of synthetic biology and cellular automata, such local properties can be abstractly specified, and the long-term, system-wide, and dynamical consequences of localized assumptions can be carefully explored. This thesis explores the potential impacts of Darwinian selection of dynamical properties on long term cellular differentiation and organism growth. The focus here is on the relationship between organism homogeneity (or heterogeneity) and the dynamical properties of robustness, adaptivity, and chromatic symmetry. This dissertation applies an experimental approach to test the following three hypotheses: (1) cellular differentiation increases the expected robustness in an organism’s dynamics, (2) cellular differentiation leads to more uniform adaptivity as the organism grows, and (3) for organisms with symmetry, growth by segment elongation is more likely than growth by segment reduplication. To explore these hypotheses, we address several obstacles in the experimental study of dynamical systems, including computational time limits and big data

    Land-Cover and Land-Use Study Using Genetic Algorithms, Petri Nets, and Cellular Automata

    Get PDF
    Recent research techniques, such as genetic algorithm (GA), Petri net (PN), and cellular automata (CA) have been applied in a number of studies. However, their capability and performance in land-cover land-use (LCLU) classification, change detection, and predictive modeling have not been well understood. This study seeks to address the following questions: 1) How do genetic parameters impact the accuracy of GA-based LCLU classification; 2) How do image parameters impact the accuracy of GA-based LCLU classification; 3) Is GA-based LCLU classification more accurate than the maximum likelihood classifier (MLC), iterative self-organizing data analysis technique (ISODATA), and the hybrid approach; 4) How do genetic parameters impact Petri Net-based LCLU change detection; and 5) How do cellular automata components impact the accuracy of LCLU predictive modeling. The study area, namely the Tickfaw River watershed (711mi²), is located in southeast Louisiana and southwest Mississippi. The major datasets include time-series Landsat TM / ETM images and Digital Orthophoto Quarter Quadrangles (DOQQ’s). LCLU classification was conducted by using the GA, MLC, ISODATA, and Hybrid approach. The LCLU change was modeled by using genetic PN-based process mining technique. The process models were interpreted and input to a CA for predicting future LCLU. The major findings include: 1) GA-based LCLU classification is more accurate than the traditional approaches; 2) When genetic parameters, image parameters, or CA components are configured improperly, the accuracy of LCLU classification, the coverage of LCLU change process model, and/or the accuracy of LCLU predictive modeling will be low; 3) For GA-based LCLU classification, the recommended configuration of genetic / image parameters is generation 2000-5000, population 1000, crossover rate 69%-99%, mutation rate 0.1%-0.5%, generation gap 25%-50%, data layers 16-20, training / testing data size 10000-20000 / 5000-10000, and spatial resolution 30m-60m; 4) For genetic Petri nets-based LCLU change detection, the recommended configuration of genetic parameters is generation 500, population 300, crossover rate 59%, mutation rate 5%, and elitism rate 4%; and 5) For CA-based LCLU predictive modeling, the recommended configuration of CA components is space 6025 * 12993, state 2, von Neumann neighborhood 3 * 3, time step 2-3 years, and optimized transition rules

    Computational Logic for Biomedicine and Neuroscience

    Get PDF
    We advocate here the use of computational logic for systems biology, as a \emph{unified and safe} framework well suited for both modeling the dynamic behaviour of biological systems, expressing properties of them, and verifying these properties. The potential candidate logics should have a traditional proof theoretic pedigree (including either induction, or a sequent calculus presentation enjoying cut-elimination and focusing), and should come with certified proof tools. Beyond providing a reliable framework, this allows the correct encodings of our biological systems. % For systems biology in general and biomedicine in particular, we have so far, for the modeling part, three candidate logics: all based on linear logic. The studied properties and their proofs are formalized in a very expressive (non linear) inductive logic: the Calculus of Inductive Constructions (CIC). The examples we have considered so far are relatively simple ones; however, all coming with formal semi-automatic proofs in the Coq system, which implements CIC. In neuroscience, we are directly using CIC and Coq, to model neurons and some simple neuronal circuits and prove some of their dynamic properties. % In biomedicine, the study of multi omic pathway interactions, together with clinical and electronic health record data should help in drug discovery and disease diagnosis. Future work includes using more automatic provers. This should enable us to specify and study more realistic examples, and in the long term to provide a system for disease diagnosis and therapy prognosis.Nous pr{\^o}nons ici l'utilisation d'une logique calculatoire pour la biologie des systèmes, en tant que cadre \emph{unifié et sûr}, bien adapté à la fois à la modélisation du comportement dynamique des systèmes biologiques,à l'expression de leurs propriétés, et à la vérification de ces propriétés.Les logiques candidates potentielles doivent avoir un pedigree traditionnel en théorie de la preuve (y compris, soit l'induction, soit une présentation en calcul des séquents, avec l'élimination des coupures et des règles ``focales''), et doivent être accompagnées d'outils de preuves certifiés.En plus de fournir un cadre fiable, cela nous permet d'encoder de manière correcte nos systèmes biologiques. Pour la biologie des systèmes en général et la biomédecine en particulier, nous avons jusqu'à présent, pour la partie modélisation, trois logiques candidates : toutes basées sur la logique linéaire.Les propriétés étudiées et leurs preuves sont formalisées dans une logique inductive (non linéaire) très expressive : le Calcul des Constructions Inductives (CIC).Les exemples que nous avons étudiés jusqu'à présent sont relativement simples. Cependant, ils sont tous accompagnés de preuves formelles semi-automatiques dans le système Coq, qui implémente CIC. En neurosciences, nous utilisons directement CIC et Coq pour modéliser les neurones et certains circuits neuronaux simples et prouver certaines de leurs propriétés dynamiques.En biomédecine, l'étude des interactions entre des voies multiomiques,ainsi que les études cliniques et les données des dossiers médicaux électroniques devraient aider à la découverte de médicaments et au diagnostic des maladies.Les travaux futurs portent notamment sur l'utilisation de systèmes de preuves plus automatiques.Cela devrait nous permettre de modéliser et d'étudier des exemples plus réalistes,et à terme de fournir un système pour le diagnostic des maladies et le pronostic thérapeutique
    • …
    corecore