48,527 research outputs found

    Fast, Dense Feature SDM on an iPhone

    Full text link
    In this paper, we present our method for enabling dense SDM to run at over 90 FPS on a mobile device. Our contributions are two-fold. Drawing inspiration from the FFT, we propose a Sparse Compositional Regression (SCR) framework, which enables a significant speed up over classical dense regressors. Second, we propose a binary approximation to SIFT features. Binary Approximated SIFT (BASIFT) features, which are a computationally efficient approximation to SIFT, a commonly used feature with SDM. We demonstrate the performance of our algorithm on an iPhone 7, and show that we achieve similar accuracy to SDM

    Design and implementation of a multi-octave-band audio camera for realtime diagnosis

    Full text link
    Noise pollution investigation takes advantage of two common methods of diagnosis: measurement using a Sound Level Meter and acoustical imaging. The former enables a detailed analysis of the surrounding noise spectrum whereas the latter is rather used for source localization. Both approaches complete each other, and merging them into a unique system, working in realtime, would offer new possibilities of dynamic diagnosis. This paper describes the design of a complete system for this purpose: imaging in realtime the acoustic field at different octave bands, with a convenient device. The acoustic field is sampled in time and space using an array of MEMS microphones. This recent technology enables a compact and fully digital design of the system. However, performing realtime imaging with resource-intensive algorithm on a large amount of measured data confronts with a technical challenge. This is overcome by executing the whole process on a Graphic Processing Unit, which has recently become an attractive device for parallel computing

    Next Generation M2M Cellular Networks: Challenges and Practical Considerations

    Get PDF
    In this article, we present the major challenges of future machine-to-machine (M2M) cellular networks such as spectrum scarcity problem, support for low-power, low-cost, and numerous number of devices. As being an integral part of the future Internet-of-Things (IoT), the true vision of M2M communications cannot be reached with conventional solutions that are typically cost inefficient. Cognitive radio concept has emerged to significantly tackle the spectrum under-utilization or scarcity problem. Heterogeneous network model is another alternative to relax the number of covered users. To this extent, we present a complete fundamental understanding and engineering knowledge of cognitive radios, heterogeneous network model, and power and cost challenges in the context of future M2M cellular networks

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control
    corecore