942 research outputs found

    A Distributed Asynchronous Transmission Access Strategy for Optical Single-Hop LANs: An Analytical Performance Study

    Get PDF
    In this paper, we introduce an optical passive network architecture suitable for wavelength division multiplexing local area networks (LANs) which use a separate control wavelength. The data wavelengths are organized into several sets, while the access rights over them are distributedly determined aiming to totally expunge the packets collisions on the wavelengths and at destination. The proposed access algorithm pertains to the asynchronous transmission schemes. Thus, it is simple enough since it does not require any synchronization among the stations, providing high efficiency especially under high data rates (100 Gbps and beyond). The performance is evaluated through exhaustive analysis, whilst closed mathematical formulas provide the performance measures. The comparative study proves that the proposed wavelengths organization into sets strategy along with the access scheme significantly improves the performance. Especially, the throughput improvement is proven to be higher as the number of sets increases, and more than 100% even by organizing the wavelengths into only two sets, for diverse numbers of data wavelengths, data wavelengths sets and data packets size. Finally, the proposed study could be applied to optical passive single-hop LANs such as intra-rack data center networks or local institutional or enterprise networks

    Performance analysis of Gb/s WDM FDDI network

    Get PDF
    In this paper, we propose a time-token multi-Gb/s Wavelength Division Multiplexing Fibre Distributed Data Interface (WDM/FDDI) architecture and examine its throughput efficiency and delay under heavy load for different network configuration using discrete event simulator

    Design and Investigation of RGB-type LED Visible Light Communication System

    Get PDF
    This paper examines the feasibility of a Red Green Blue (RGB)-type Light Emitting Diode (LED) Visible Light Communication (VLC) system based on wavelength division multiplexing (WDM). Each color in the RGB-LED is individually modulated to increase the data rate by three times as compared to the single channel modulation approach used in conventional VLC system. Color filters are employed to detect separately the RGB signals at the receiver side. The proposed system utilized a reflector to improve the performance and the system is lens-free. In this work, an approach of approximated WDM testing is adopted due to the incapability of multiplexing by the microcontroller at higher data rate. The proposed system is demonstrated to transmit and receive data at a maximum distance of 1.4m, with total data transmission speed of 345.6 kbps using standard WDM, while a total speed of 1.5 Mbps up to maximum distance of 1.2m and 3 Mbps up to maximum distance of 0.7m is achieved by the approach of approximated WDM testing

    Node design in optical packet switched networks

    Get PDF

    A Comparative Study of Asynchronous and Synchronous OCDMA Systems

    Get PDF

    Optical code-division multiple access system and optical signal processing

    Get PDF
    This thesis presents our recent researches on the development of coding devices, the investigation of security and the design of systems in the optical cod-division multiple access (OCDMA) systems. Besides, the techniques of nonlinear signal processing used in the OCDMA systems fire our imagination, thus some researches on all-optical signal processing are carried out and also summarized in this thesis. Two fiber Bragg grating (FBG) based coding devices are proposed. The first coding device is a superstructured FBG (SSFBG) using ±π/2-phase shifts instead of conventional 0/π-phase shifts. The ±π/2-phase-shifted SSFBG en/decoders can not only conceal optical codes well in the encoded signals but also realize the reutilization of available codes by hybrid use with conventional 0/π-phase-shifted SSFBG en/decoders. The second FBG based coding device is synthesized by layer-peeling method, which can be used for simultaneous optical code recognition and chromatic dispersion compensation. Then, two eavesdropping schemes, one-bit delay interference detection and differential detection, are demonstrated to reveal the security vulnerability of differential phase-shift keying (DPSK) and code-shift keying (CSK) OCDMA systems. To address the security issue as well as increase the transmission capacity, an orthogonal modulation format based on DPSK and CSK is introduced into the OCDMA systems. A 2 bit/symbol 10 Gsymbol/s transmission system using the orthogonal modulation format is achieved. The security of the system can be partially guaranteed. Furthermore, a fully-asynchronous gigabit-symmetric OCDMA passive optical network (PON) is proposed, in which a self-clocked time gate is employed for signal regeneration. A remodulation scheme is used in the PON, which let downstream and upstream share the same optical carrier, allowing optical network units source-free. An error-free 4-user 10 Gbit/s/user duplex transmission over 50 km distance is reazlied. A versatile waveform generation scheme is then studied. A theoretical model is established and a waveform prediction algorithm is summarized. In the demonstration, various waveforms are generated including short pulse, trapezoidal, triangular and sawtooth waveforms and doublet pulse. ii In addition, an all-optical simultaneous half-addition and half-subtraction scheme is achieved at an operating rate of 10 GHz by using only two semiconductor optical amplifiers (SOA) without any assist light. Lastly, two modulation format conversion schemes are demonstrated. The first conversion is from NRZ-OOK to PSK-Manchester coding format using a SOA based Mach-Zehnder interferometer. The second conversion is from RZ-DQPSK to RZ-OOK by employing a supercontinuum based optical thresholder

    Nonlinear Photonic Signal Processing Subsystems and Applications

    Get PDF
    corecore