3,213 research outputs found

    Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance

    Full text link
    Full Duplex or Simultaneous transmission and reception (STR) in the same frequency at the same time can potentially double the physical layer capacity. However, high power transmit signal will appear at receive chain as echoes with powers much higher than the desired received signal. Therefore, in order to achieve the potential gain, it is imperative to cancel these echoes. As these high power echoes can saturate low noise amplifier (LNA) and also digital domain echo cancellation requires unrealistically high resolution analog-to-digital converter (ADC), the echoes should be cancelled or suppressed sufficiently before LNA. In this paper we present a closed-loop echo cancellation technique which can be implemented purely in analogue domain. The advantages of our method are multiple-fold: it is robust to phase noise, does not require additional set of antennas, can be applied to wideband signals and the performance is irrelevant to radio frequency (RF) impairments in transmit chain. Next, we study a few protocols for STR systems in carrier sense multiple access (CSMA) network and investigate MAC level throughput with realistic assumptions in both single cell and multiple cells. We show that STR can reduce hidden node problem in CSMA network and produce gains of up to 279% in maximum throughput in such networks. Finally, we investigate the application of STR in cellular systems and study two new unique interferences introduced to the system due to STR, namely BS-BS interference and UE-UE interference. We show that these two new interferences will hugely degrade system performance if not treated appropriately. We propose novel methods to reduce both interferences and investigate the performances in system level.Comment: 20 pages. This manuscript will appear in the IEEE Transactions on Wireless Communication

    Flat Cellular (UMTS) Networks

    Get PDF
    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective it was better to concentrate traffic and to share the cost of processing equipment over a large set of users while keeping the base stations relatively cheap. However, we believe the economic reasons for designing cellular systems in a hierarchical manner have disappeared: in fact, hierarchical architectures hinder future efficient deployments. In this paper, we argue for completely flat cellular wireless systems, which need just one type of specialized network element to provide radio access network (RAN) functionality, supplemented by standard IP-based network elements to form a cellular network. While the reason for building a cellular system in a hierarchical fashion has disappeared, there are other good reasons to make the system architecture flat: (1) as wireless transmission techniques evolve into hybrid ARQ systems, there is less need for a hierarchical cellular system to support spatial diversity; (2) we foresee that future cellular networks are part of the Internet, while hierarchical systems typically use interfaces between network elements that are specific to cellular standards or proprietary. At best such systems use IP as a transport medium, not as a core component; (3) a flat cellular system can be self scaling while a hierarchical system has inherent scaling issues; (4) moving all access technologies to the edge of the network enables ease of converging access technologies into a common packet core; and (5) using an IP common core makes the cellular network part of the Internet

    Fundamental Limits of Caching in Wireless D2D Networks

    Full text link
    We consider a wireless Device-to-Device (D2D) network where communication is restricted to be single-hop. Users make arbitrary requests from a finite library of files and have pre-cached information on their devices, subject to a per-node storage capacity constraint. A similar problem has already been considered in an ``infrastructure'' setting, where all users receive a common multicast (coded) message from a single omniscient server (e.g., a base station having all the files in the library) through a shared bottleneck link. In this work, we consider a D2D ``infrastructure-less'' version of the problem. We propose a caching strategy based on deterministic assignment of subpackets of the library files, and a coded delivery strategy where the users send linearly coded messages to each other in order to collectively satisfy their demands. We also consider a random caching strategy, which is more suitable to a fully decentralized implementation. Under certain conditions, both approaches can achieve the information theoretic outer bound within a constant multiplicative factor. In our previous work, we showed that a caching D2D wireless network with one-hop communication, random caching, and uncoded delivery, achieves the same throughput scaling law of the infrastructure-based coded multicasting scheme, in the regime of large number of users and files in the library. This shows that the spatial reuse gain of the D2D network is order-equivalent to the coded multicasting gain of single base station transmission. It is therefore natural to ask whether these two gains are cumulative, i.e.,if a D2D network with both local communication (spatial reuse) and coded multicasting can provide an improved scaling law. Somewhat counterintuitively, we show that these gains do not cumulate (in terms of throughput scaling law).Comment: 45 pages, 5 figures, Submitted to IEEE Transactions on Information Theory, This is the extended version of the conference (ITW) paper arXiv:1304.585

    A Novel Uplink Data Transmission Scheme For Small Packets In Massive MIMO System

    Full text link
    Intelligent terminals often produce a large number of data packets of small lengths. For these packets, it is inefficient to follow the conventional medium access control (MAC) protocols because they lead to poor utilization of service resources. We propose a novel multiple access scheme that targets massive multiple-input multiple-output (MIMO) systems based on compressive sensing (CS). We employ block precoding in the time domain to enable the simultaneous transmissions of many users, which could be even more than the number of receive antennas at the base station. We develop a block-sparse system model and adopt the block orthogonal matching pursuit (BOMP) algorithm to recover the transmitted signals. Conditions for data recovery guarantees are identified and numerical results demonstrate that our scheme is efficient for uplink small packet transmission.Comment: IEEE/CIC ICCC 2014 Symposium on Signal Processing for Communication

    Multiple Access for Small Packets Based on Precoding and Sparsity-Aware Detection

    Get PDF
    Modern mobile terminals often produce a large number of small data packets. For these packets, it is inefficient to follow the conventional medium access control protocols because of poor utilization of service resources. We propose a novel multiple access scheme that employs block-spreading based precoding at the transmitters and sparsity-aware detection schemes at the base station. The proposed scheme is well suited for the emerging massive multiple-input multiple-output (MIMO) systems, as well as conventional cellular systems with a small number of base-station antennas. The transmitters employ precoding in time domain to enable the simultaneous transmissions of many users, which could be even more than the number of receive antennas at the base station. The system is modeled as a linear system of equations with block-sparse unknowns. We first adopt the block orthogonal matching pursuit (BOMP) algorithm to recover the transmitted signals. We then develop an improved algorithm, named interference cancellation BOMP (ICBOMP), which takes advantage of error correction and detection coding to perform perfect interference cancellation during each iteration of BOMP algorithm. Conditions for guaranteed data recovery are identified. The simulation results demonstrate that the proposed scheme can accommodate more simultaneous transmissions than conventional schemes in typical small-packet transmission scenarios.Comment: submitted to IEEE Transactions on Wireless Communication

    Performance Studies of Multimedia Traffic in CDMA Cellular Network

    Get PDF
    The current generation of wireless cellular network is mostly used for voice communication. Although data services such as short message services (SMS) are available, voice communication still takes precedence. However, in the near future, it is anticipated that wireless communication is expected to handle multimedia traffic that is currently available on land networks. Multimedia traffic includes video services such as real time video and audio, voice services and data services similar to the ones available in the Internet. The cellular network carrying multimedia traffic is analysed in a single cell where Code Division Multiple Access (CDMA) protocol is used for users to access the network simultaneously. The study is analysed for the reverse link communication, i. e., communication between the user and the base station. CDMA is used because of its merits in minimising the effect of interference, increasing cell capacity and high security features compared to other access technologies. The model inputs include co- channel interference, signal to noise ratio, bit error rate requirements, number of users, the channel access priority and threshold. Suitable assumptions to enable simulation are made. The model is simulated to see the impact of complementing data traffic along with voice and video traffic. The model is also simulated for synchronous transmission and asynchronous transmission of packets. The results shows that data traffic can be successfully complemented along with voice and video traffic without significantly degrading voice and video delay. Data traffic can tolerate delay but is loss sensitive. Data traffic delay can be used without suffering any loss, even by reducing the data access priority. The model also compared the effects of synchronous and asynchronous transmission. Synchronous transmission indicated an overhead in packet delay compared to asynchronous transmission. It is concluded from the work that voice, video and data traffic can be served in a cell simultaneously with asynchronous transmission. A higher bandwidth can assure a higher number of multimedia users in a asynchronous CDMA cellular network. The model will serve as a useful design tool
    corecore