815 research outputs found

    Asynchronous simulation of Boolean networks by monotone Boolean networks

    Get PDF
    International audienceWe prove that the fully asynchronous dynamics of a Boolean network f : {0, 1}^n → {0, 1}^n without negative loop can be simulated, in a very specific way, by a monotone Boolean network with 2n components. We then use this result to prove that, for every even n, there exists a monotone Boolean network f : {0, 1}^n → {0, 1}^n , an initial configuration x and a fixed point y of f such that: (i) y can be reached from x with a fully asynchronous updating strategy, and (ii) all such strategies contains at least 2^{n/2} updates. This contrasts with the following known property: if f : {0, 1}^n → {0, 1}^n is monotone, then, for every initial configuration x, there exists a fixed point y such that y can be reached from x with a fully asynchronous strategy that contains at most n updates

    On the effects of firing memory in the dynamics of conjunctive networks

    Full text link
    Boolean networks are one of the most studied discrete models in the context of the study of gene expression. In order to define the dynamics associated to a Boolean network, there are several \emph{update schemes} that range from parallel or \emph{synchronous} to \emph{asynchronous.} However, studying each possible dynamics defined by different update schemes might not be efficient. In this context, considering some type of temporal delay in the dynamics of Boolean networks emerges as an alternative approach. In this paper, we focus in studying the effect of a particular type of delay called \emph{firing memory} in the dynamics of Boolean networks. Particularly, we focus in symmetric (non-directed) conjunctive networks and we show that there exist examples that exhibit attractors of non-polynomial period. In addition, we study the prediction problem consisting in determinate if some vertex will eventually change its state, given an initial condition. We prove that this problem is {\bf PSPACE}-complete

    Partial Order on the set of Boolean Regulatory Functions

    Get PDF
    Logical models have been successfully used to describe regulatory and signaling networks without requiring quantitative data. However, existing data is insufficient to adequately define a unique model, rendering the parametrization of a given model a difficult task. Here, we focus on the characterization of the set of Boolean functions compatible with a given regulatory structure, i.e. the set of all monotone nondegenerate Boolean functions. We then propose an original set of rules to locally explore the direct neighboring functions of any function in this set, without explicitly generating the whole set. Also, we provide relationships between the regulatory functions and their corresponding dynamics. Finally, we illustrate the usefulness of this approach by revisiting Probabilistic Boolean Networks with the model of T helper cell differentiation from Mendoza & Xenarios

    Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems

    Full text link
    A complete classification of the computational complexity of the fixed-point existence problem for boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NP-complete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.Comment: 17 pages; this version corrects an error/typo in the 2008/01/24 versio

    Complementing ODE-Based System Analysis Using Boolean Networks Derived from an Euler-Like Transformation

    Get PDF
    In this paper, we present a systematic transition scheme for a large class of ordinary differential equations (ODEs) into Boolean networks. Our transition scheme can be applied to any system of ODEs whose right hand sides can be written as sums and products of monotone functions. It performs an Euler-like step which uses the signs of the right hand sides to obtain the Boolean update functions for every variable of the corresponding discrete model. The discrete model can, on one hand, be considered as another representation of the biological system or, alternatively, it can be used to further the analysis of the original ODE model. Since the generic transformation method does not guarantee any property conservation, a subsequent validation step is required. Depending on the purpose of the model this step can be based on experimental data or ODE simulations and characteristics. Analysis of the resulting Boolean model, both on its own and in comparison with the ODE model, then allows to investigate system properties not accessible in a purely continuous setting. The method is exemplarily applied to a previously published model of the bovine estrous cycle, which leads to new insights regarding the regulation among the components, and also indicates strongly that the system is tailored to generate stable oscillations
    • …
    corecore