4,728 research outputs found

    Asynchronous Gossip for Averaging and Spectral Ranking

    Full text link
    We consider two variants of the classical gossip algorithm. The first variant is a version of asynchronous stochastic approximation. We highlight a fundamental difficulty associated with the classical asynchronous gossip scheme, viz., that it may not converge to a desired average, and suggest an alternative scheme based on reinforcement learning that has guaranteed convergence to the desired average. We then discuss a potential application to a wireless network setting with simultaneous link activation constraints. The second variant is a gossip algorithm for distributed computation of the Perron-Frobenius eigenvector of a nonnegative matrix. While the first variant draws upon a reinforcement learning algorithm for an average cost controlled Markov decision problem, the second variant draws upon a reinforcement learning algorithm for risk-sensitive control. We then discuss potential applications of the second variant to ranking schemes, reputation networks, and principal component analysis.Comment: 14 pages, 7 figures. Minor revisio

    Gossip Dual Averaging for Decentralized Optimization of Pairwise Functions

    Get PDF
    In decentralized networks (of sensors, connected objects, etc.), there is an important need for efficient algorithms to optimize a global cost function, for instance to learn a global model from the local data collected by each computing unit. In this paper, we address the problem of decentralized minimization of pairwise functions of the data points, where these points are distributed over the nodes of a graph defining the communication topology of the network. This general problem finds applications in ranking, distance metric learning and graph inference, among others. We propose new gossip algorithms based on dual averaging which aims at solving such problems both in synchronous and asynchronous settings. The proposed framework is flexible enough to deal with constrained and regularized variants of the optimization problem. Our theoretical analysis reveals that the proposed algorithms preserve the convergence rate of centralized dual averaging up to an additive bias term. We present numerical simulations on Area Under the ROC Curve (AUC) maximization and metric learning problems which illustrate the practical interest of our approach

    Extending Gossip Algorithms to Distributed Estimation of U-Statistics

    Get PDF
    Efficient and robust algorithms for decentralized estimation in networks are essential to many distributed systems. Whereas distributed estimation of sample mean statistics has been the subject of a good deal of attention, computation of UU-statistics, relying on more expensive averaging over pairs of observations, is a less investigated area. Yet, such data functionals are essential to describe global properties of a statistical population, with important examples including Area Under the Curve, empirical variance, Gini mean difference and within-cluster point scatter. This paper proposes new synchronous and asynchronous randomized gossip algorithms which simultaneously propagate data across the network and maintain local estimates of the UU-statistic of interest. We establish convergence rate bounds of O(1/t)O(1/t) and O(logt/t)O(\log t / t) for the synchronous and asynchronous cases respectively, where tt is the number of iterations, with explicit data and network dependent terms. Beyond favorable comparisons in terms of rate analysis, numerical experiments provide empirical evidence the proposed algorithms surpasses the previously introduced approach.Comment: to be presented at NIPS 201
    corecore