26 research outputs found

    Synthesis and Analysis of Petri Nets from Causal Specifications

    Get PDF
    Petri nets are one of the most prominent system-level formalisms for the specification of causality in concurrent, distributed, or multi-agent systems. This formalism is abstract enough to be analyzed using theoretical tools, and at the same time, concrete enough to eliminate ambiguities that would arise at implementation level. One interesting feature of Petri nets is that they can be studied from the point of view of true concurrency, where causal scenarios are specified using partial orders, instead of approaches based on interleaving. On the other hand, message sequence chart (MSC) languages, are a standard formalism for the specification of causality from a purely behavioral perspective. In other words, this formalism specifies a set of causal scenarios between actions of a system, without providing any implementation-level details about the system. In this work, we establish several new connections between MSC languages and Petri nets, and show that several computational problems involving these formalisms are decidable. Our results fill some gaps in the literature that had been open for several years. To obtain our results we develop new techniques in the realm of slice automata theory, a framework introduced one decade ago in the study of the partial order behavior of bounded Petri nets. These techniques can also be applied to establish connections between Petri nets and other well studied behavioral formalisms, such as the notion of Mazurkiewicz trace languages.publishedVersio

    Distributed Synthesis in Continuous Time

    Get PDF
    We introduce a formalism modelling communication of distributed agents strictly in continuous-time. Within this framework, we study the problem of synthesising local strategies for individual agents such that a specified set of goal states is reached, or reached with at least a given probability. The flow of time is modelled explicitly based on continuous-time randomness, with two natural implications: First, the non-determinism stemming from interleaving disappears. Second, when we restrict to a subclass of non-urgent models, the quantitative value problem for two players can be solved in EXPTIME. Indeed, the explicit continuous time enables players to communicate their states by delaying synchronisation (which is unrestricted for non-urgent models). In general, the problems are undecidable already for two players in the quantitative case and three players in the qualitative case. The qualitative undecidability is shown by a reduction to decentralized POMDPs for which we provide the strongest (and rather surprising) undecidability result so far

    Distributed Versions of Linear Time Temporal Logic: A Trace Perspective

    Full text link

    A Kleene theorem and model checking algorithms for existentially bounded communicating automata

    Get PDF
    AbstractThe behavior of a network of communicating automata is called existentially bounded if communication events can be scheduled in such a way that the number of messages in transit is always bounded by a value that depends only on the machine, not the run itself. We show a Kleene theorem for existentially bounded communicating automata, namely the equivalence between communicating automata, globally cooperative compositional message sequence graphs, and monadic second order logic. Our characterization extends results for universally bounded models, where for each and every possible scheduling of communication events, the number of messages in transit is uniformly bounded. As a consequence, we give solutions in spirit of Madhusudan (2001) for various model checking problems on networks of communicating automata that satisfy our optimistic restriction

    On the Expressive Power of 2-Stack Visibly Pushdown Automata

    Full text link
    Visibly pushdown automata are input-driven pushdown automata that recognize some non-regular context-free languages while preserving the nice closure and decidability properties of finite automata. Visibly pushdown automata with multiple stacks have been considered recently by La Torre, Madhusudan, and Parlato, who exploit the concept of visibility further to obtain a rich automata class that can even express properties beyond the class of context-free languages. At the same time, their automata are closed under boolean operations, have a decidable emptiness and inclusion problem, and enjoy a logical characterization in terms of a monadic second-order logic over words with an additional nesting structure. These results require a restricted version of visibly pushdown automata with multiple stacks whose behavior can be split up into a fixed number of phases. In this paper, we consider 2-stack visibly pushdown automata (i.e., visibly pushdown automata with two stacks) in their unrestricted form. We show that they are expressively equivalent to the existential fragment of monadic second-order logic. Furthermore, it turns out that monadic second-order quantifier alternation forms an infinite hierarchy wrt words with multiple nestings. Combining these results, we conclude that 2-stack visibly pushdown automata are not closed under complementation. Finally, we discuss the expressive power of B\"{u}chi 2-stack visibly pushdown automata running on infinite (nested) words. Extending the logic by an infinity quantifier, we can likewise establish equivalence to existential monadic second-order logic

    Weighted Branching Automata: Combining Concurrency and Weights

    Get PDF
    Eine der stärksten Erweiterungen der klassischen Theorie formaler Sprachen und Automaten ist die Einbeziehung von Gewichten oder Vielfachheiten aus einem Halbring. Diese Dissertation untersucht gewichtete Automaten über Strukturen mit Nebenläufigkeit. Wir erweitern die Arbeit von Lodaya und Weil und erhalten so ein Modell gewichteter verzweigender Automaten, in dem die Berechnung des Gewichts einer parallelen Komposition anders als die einer sequentiellen Komposition gehandhabt wird. Die von Lodaya und Weil eingeführten Automaten modellieren Nebenläufigkeit durch Verzweigen. Ein verzweigender Automat ist ein endlicher Automat mit drei verschiedenen Typen von Transitionen. Sequentielle Transitionen überführen durch Ausführen eines Ereignisses einen Zustand in einen anderen. Dagegen sind Gabel- und Binde-Transitionen für das Verzweigen verantwortlich. Läufe dieser Automaten werden beschrieben durch sequentiell-parallele posets, kurz sp-posets. Alle Transitionen des Automaten werden in unserem Modell mit Gewichten versehen. Neben dem Nichtdeterminismus und der sequentiellen Komposition wollen wir nun auch die parallele Komposition quantitativ behandeln. Dafür benötigen wir eine Gewichtsstruktur mit einer Addition, einer sequentiellen und einer parallelen Multiplikation. Solch eine Struktur, genannt Bihalbring, besteht damit de facto aus zwei Halbringen mit derselben additiven Struktur. Weiterhin muss die parallele Multiplikation kommutativ sein. Das Verhalten eines gewichteten verzweigenden Automaten ist dann eine Funktion, die jeder sp-poset ein Element eines Bihalbrings zuordnet. Das Hauptresultat charakterisiert das Verhalten dieser Automaten im Sinne von Kleenes und Schützenbergers Sätzen über das Zusammenfallen der Klassen der erkennbaren und der rationalen Sprachen bzw. formalen Potenzreihen. Darüber hinaus untersuchen wir den Abschluss dieser Verhalten unter allen rationalen Operationen und unter dem Hadamard-Produkt. Letztlich diskutieren wir Zusammenhänge zwischen Reihen und Sprachen im Rahmen verzweigender Automaten.One of the most powerful extensions of classical formal language and automata theory is the consideration of weights or multiplicities from a semiring. This thesis investigates weighted automata over structures incorporating concurrency. Extending work by Lodaya and Weil, we propose a model of weighted branching automata in which the calculation of the weight of a parallel composition is handled differently from the calculation of the weight of a sequential composition. The automata as proposed by Lodaya and Weil model concurrency by branching. A branching automaton is a finite-state device with three different types of transitions. Sequential transitions transform a state into another one by executing an action. In contrast, fork and join transitions are responsible for branching. Executions of such systems can be described by sequential-parallel posets, or sp-posets for short. In the model considered here all kinds of transitions are equipped with weights. Beside non-determinism and sequential composition we would like to deal with the parallel composition in a quantitative way. Therefore, we are in need of a weight structure equipped with addition, a sequential, and, moreover, a parallel multiplication. Such a structure, called a bisemiring, is actually composed of two semirings with the same additive structure. Moreover, the parallel multiplication has to be commutative. Now, the behavior of a weighted branching automaton is a function that associates with every sp-poset an element from the bisemiring. The main result characterizes the behavior of these automata in the spirit of Kleene's and Schützenberger's theorems about the coincidence of recognizable and rational languages, and formal power series, respectively. Moreover, we investigate the closure of behaviors under all rational operations and under Hadamard-product. Finally, we discuss connections between series and languages within our setting

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.
    corecore