5,000 research outputs found

    Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization

    Full text link
    We suggest a general oracle-based framework that captures different parallel stochastic optimization settings described by a dependency graph, and derive generic lower bounds in terms of this graph. We then use the framework and derive lower bounds for several specific parallel optimization settings, including delayed updates and parallel processing with intermittent communication. We highlight gaps between lower and upper bounds on the oracle complexity, and cases where the "natural" algorithms are not known to be optimal

    Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization

    Full text link
    In this paper, we study a class of stochastic optimization problems, referred to as the \emph{Conditional Stochastic Optimization} (CSO), in the form of \min_{x \in \mathcal{X}} \EE_{\xi}f_\xi\Big({\EE_{\eta|\xi}[g_\eta(x,\xi)]}\Big), which finds a wide spectrum of applications including portfolio selection, reinforcement learning, robust learning, causal inference and so on. Assuming availability of samples from the distribution \PP(\xi) and samples from the conditional distribution \PP(\eta|\xi), we establish the sample complexity of the sample average approximation (SAA) for CSO, under a variety of structural assumptions, such as Lipschitz continuity, smoothness, and error bound conditions. We show that the total sample complexity improves from \cO(d/\eps^4) to \cO(d/\eps^3) when assuming smoothness of the outer function, and further to \cO(1/\eps^2) when the empirical function satisfies the quadratic growth condition. We also establish the sample complexity of a modified SAA, when ξ\xi and η\eta are independent. Several numerical experiments further support our theoretical findings. Keywords: stochastic optimization, sample average approximation, large deviations theoryComment: Typo corrected. Reference added. Revision comments handle

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems
    • …
    corecore