188 research outputs found

    Cooperative diversity for the cellular uplink: Sharing strategies, performance analysis, and receiver design

    Get PDF
    In this thesis, we propose data sharing schemes for the cooperative diversity in a cellular uplink to exploit diversity and enhance throughput performance of the system. Particularly, we consider new two and three-or-more user decode and forward (DF) protocols using space time block codes. We discuss two-user and three-user amplify and forward (AF) protocols and evaluate the performance of the above mentioned data sharing protocols in terms of the bit error rate and the throughput in an asynchronous code division multiple access (CDMA) cellular uplink. We develop a linear receiver for joint space-time decoding and multiuser detection that provides full diversity and near maximum-likelihood performance.;We also focus on a practical situation where inter-user channel is noisy and cooperating users can not successfully estimate other user\u27s data. We further design our system model such that, users decide not to forward anything in case of symbol errors. Channel estimation plays an important role here, since cooperating users make random estimation errors and the base station can not have the knowledge of the errors or the inter-user channels. We consider a training-based approach for channel estimation. We provide an information outage probability analysis for the proposed multi-user sharing schemes. (Abstract shortened by UMI.)

    Performance assessment of wireless Two Way Relay Channel systems

    Get PDF
    The objective of this thesis is theoretical investigations and numerical simulations of Two Way Relay Channel (TWRC) systems, particularly in an impulsive noise environment. Special attention is given to investigation of a TWRC system based on polarized antennas. The first part of the thesis focuses on modelling of impulsive noise and the effect of impulsive noise on TWRC systems. The study was conducted by simulating the wireless TWRC models in the presence of impulsive noise. The bit error probability performance of the channel data was compared and at last their results are shown by graphs. The study has been further extended to multi antenna TWRC systems. Simulation analysis of multi antenna TWRC systems in an impulsive noise environment was conducted by using a MISO Alamouti scheme and a MIMO system. The second part of the thesis dedicated to investigation of TWRC polarization systems. A new TWRC scheme based on polarized antennas has been proposed and simulated. By polarization we are able to achieve higher spectral efficiency through the use of spatial multiplexing, and improve the reliability by spatial diversity. A new network topology based on TWRC polarization systems proposed. It is well suited to mitigate effect of delay in a communication system, particularly for high priority data transmission, or increase reliability of a communication system by redundant transmission

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    Algorithm Development and VLSI Implementation of Energy Efficient Decoders of Polar Codes

    Get PDF
    With its low error-floor performance, polar codes attract significant attention as the potential standard error correction code (ECC) for future communication and data storage. However, the VLSI implementation complexity of polar codes decoders is largely influenced by its nature of in-series decoding. This dissertation is dedicated to presenting optimal decoder architectures for polar codes. This dissertation addresses several structural properties of polar codes and key properties of decoding algorithms that are not dealt with in the prior researches. The underlying concept of the proposed architectures is a paradigm that simplifies and schedules the computations such that hardware is simplified, latency is minimized and bandwidth is maximized. In pursuit of the above, throughput centric successive cancellation (TCSC) and overlapping path list successive cancellation (OPLSC) VLSI architectures and express journey BP (XJBP) decoders for the polar codes are presented. An arbitrary polar code can be decomposed by a set of shorter polar codes with special characteristics, those shorter polar codes are referred to as constituent polar codes. By exploiting the homogeneousness between decoding processes of different constituent polar codes, TCSC reduces the decoding latency of the SC decoder by 60% for codes with length n = 1024. The error correction performance of SC decoding is inferior to that of list successive cancellation decoding. The LSC decoding algorithm delivers the most reliable decoding results; however, it consumes most hardware resources and decoding cycles. Instead of using multiple instances of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC architecture. The computations of each path in the LSC are arranged to occupy the decoder hardware stages serially in a streamlined fashion. This yields a significant reduction of hardware complexity. The OPLSC decoder has achieved about 1.4 times hardware efficiency improvement compared with traditional LSC decoders. The hardware efficient VLSI architectures for TCSC and OPLSC polar codes decoders are also introduced. Decoders based on SC or LSC algorithms suffer from high latency and limited throughput due to their serial decoding natures. An alternative approach to decode the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph is set up to guide the beliefs propagated and refined, which is usually referred to as factor graph. BP decoding algorithm allows decoding in parallel to achieve much higher throughput. XJBP decoder facilitates belief propagation by utilizing the specific constituent codes that exist in the conventional factor graph, which results in an express journey (XJ) decoder. Compared with the conventional BP decoding algorithm for polar codes, the proposed decoder reduces the computational complexity by about 40.6%. This enables an energy-efficient hardware implementation. To further explore the hardware consumption of the proposed XJBP decoder, the computations scheduling is modeled and analyzed in this dissertation. With discussions on different hardware scenarios, the optimal scheduling plans are developed. A novel memory-distributed micro-architecture of the XJBP decoder is proposed and analyzed to solve the potential memory access problems of the proposed scheduling strategy. The register-transfer level (RTL) models of the XJBP decoder are set up for comparisons with other state-of-the-art BP decoders. The results show that the power efficiency of BP decoders is improved by about 3 times

    Algorithm Development and VLSI Implementation of Energy Efficient Decoders of Polar Codes

    Get PDF
    With its low error-floor performance, polar codes attract significant attention as the potential standard error correction code (ECC) for future communication and data storage. However, the VLSI implementation complexity of polar codes decoders is largely influenced by its nature of in-series decoding. This dissertation is dedicated to presenting optimal decoder architectures for polar codes. This dissertation addresses several structural properties of polar codes and key properties of decoding algorithms that are not dealt with in the prior researches. The underlying concept of the proposed architectures is a paradigm that simplifies and schedules the computations such that hardware is simplified, latency is minimized and bandwidth is maximized. In pursuit of the above, throughput centric successive cancellation (TCSC) and overlapping path list successive cancellation (OPLSC) VLSI architectures and express journey BP (XJBP) decoders for the polar codes are presented. An arbitrary polar code can be decomposed by a set of shorter polar codes with special characteristics, those shorter polar codes are referred to as constituent polar codes. By exploiting the homogeneousness between decoding processes of different constituent polar codes, TCSC reduces the decoding latency of the SC decoder by 60% for codes with length n = 1024. The error correction performance of SC decoding is inferior to that of list successive cancellation decoding. The LSC decoding algorithm delivers the most reliable decoding results; however, it consumes most hardware resources and decoding cycles. Instead of using multiple instances of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC architecture. The computations of each path in the LSC are arranged to occupy the decoder hardware stages serially in a streamlined fashion. This yields a significant reduction of hardware complexity. The OPLSC decoder has achieved about 1.4 times hardware efficiency improvement compared with traditional LSC decoders. The hardware efficient VLSI architectures for TCSC and OPLSC polar codes decoders are also introduced. Decoders based on SC or LSC algorithms suffer from high latency and limited throughput due to their serial decoding natures. An alternative approach to decode the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph is set up to guide the beliefs propagated and refined, which is usually referred to as factor graph. BP decoding algorithm allows decoding in parallel to achieve much higher throughput. XJBP decoder facilitates belief propagation by utilizing the specific constituent codes that exist in the conventional factor graph, which results in an express journey (XJ) decoder. Compared with the conventional BP decoding algorithm for polar codes, the proposed decoder reduces the computational complexity by about 40.6%. This enables an energy-efficient hardware implementation. To further explore the hardware consumption of the proposed XJBP decoder, the computations scheduling is modeled and analyzed in this dissertation. With discussions on different hardware scenarios, the optimal scheduling plans are developed. A novel memory-distributed micro-architecture of the XJBP decoder is proposed and analyzed to solve the potential memory access problems of the proposed scheduling strategy. The register-transfer level (RTL) models of the XJBP decoder are set up for comparisons with other state-of-the-art BP decoders. The results show that the power efficiency of BP decoders is improved by about 3 times

    Recent Advances in Acquiring Channel State Information in Cellular MIMO Systems

    Get PDF
    In cellular multi-user multiple input multiple output (MU-MIMO) systems the quality of the available channel state information (CSI) has a large impact on the system performance. Specifically, reliable CSI at the transmitter is required to determine the appropriate modulation and coding scheme, transmit power and the precoder vector, while CSI at the receiver is needed to decode the received data symbols. Therefore, cellular MUMIMO systems employ predefined pilot sequences and configure associated time, frequency, code and power resources to facilitate the acquisition of high quality CSI for data transmission and reception. Although the trade-off between the resources used user data transmission has been known for long, the near-optimal configuration of the vailable system resources for pilot and data transmission is a topic of current research efforts. Indeed, since the fifth generation of cellular systems utilizes heterogeneous networks in which base stations are equipped with a large number of transmit and receive antennas, the appropriate configuration of pilot-data resources becomes a critical design aspect. In this article, we review recent advances in system design approaches that are designed for the acquisition of CSI and discuss some of the recent results that help to dimension the pilot and data resources specifically in cellular MU-MIMO systems

    Fifth-generation small cell backhaul capacity enhancement and large-scale parameter effect

    Get PDF
    The proliferation of handheld devices has continued to push the demand for higher data rates. Network providers will use small cells as an overlay to macrocell in fifth-generation (5G) for network capacity enhancement. The current cellular wireless backhauls suffer from the problem of insufficient backhaul capacity to cater to the new small cell deployment scenarios. Using the 3D digital map of Lagos Island in the Wireless InSite, small cells are deployed on a street canyon and in high-rise scenarios to simulate the backhaul links to the small cells at 28 GHz center frequency and 100 MHz bandwidth. Using a user-defined signal to interference plus noise ratio-throughput (SINR-throughput) table based on an adaptive modulation and coding scheme (MCS), the throughput values were generated based on the equation specified by 3GPP TS 38.306 V15.2.0 0, which estimates the peak data rate based on the modulation order and coding rate for each data stream calculated by the propagation model. Finding shows achieved channel capacity is comparable with gigabit passive optical networks (GPON) used in fiber to the ‘X’ (FTTX) for backhauling small cells. The effect of channel parameters such as root mean squared (RMS) delay spread and RMS angular spread on channel capacity are also investigated and explained
    • …
    corecore