445 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Spider monkey optimization routing protocol for wireless sensor networks

    Get PDF
    Uneven energy consumption (UEC) is latent trouble in wireless sensor networks (WSNs) that feature a multiple motion pattern and a multi-hop routing. UEC often splits the network, reduces network life, and leads to performance degradation. Sometimes, improving energy consumption is more complicated because it does not reduce energy consumption only, but it also extends network life. This makes energy consumption balancing critical to WSN design calling for energy-efficient routing protocols that increase network life. Some energy-saving protocols have been applied to make the energy consumption among all nodes inside the network equilibrate in the expectancy and end power in almost all nodes simultaneously. This work has suggested a protocol of energy-saving routing named spider monkey optimization routing protocol (SMORP), which aims to probe the issue of network life in WSNs. The proposed protocol reduces excessive routing messages that may lead to the wastage of significant energy by recycling frequent information from the source node into the sink. This routing protocol can choose the optimal routing path. That is the preferable node can be chosen from nodes of the candidate in the sending ways by preferring the energy of maximum residual, the minimum traffic load, and the least distance to the sink. Simulation results have proved the effectiveness of the proposed protocol in terms of decreasing end-to-end delay, reducing energy consumption compared to well-known routing protocols

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    A survey of network lifetime maximization techniques in wireless sensor networks

    No full text
    Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteri

    Latency Optimization in Smart Meter Networks

    Get PDF
    In this thesis, we consider the problem of smart meter networks with data collection to a central point within acceptable delay and least consumed energy. In smart metering applications, transferring and collecting data within delay constraints is crucial. IoT devices are usually resource-constrained and need reliable and energy-efficient routing protocol. Furthermore, meters deployed in lossy networks often lead to packet loss and congestion. In smart grid communication, low latency and low energy consumption are usually the main system targets. Considering these constraints, we propose an enhancement in RPL to ensure link reliability and low latency. The proposed new additive composite metric is Delay-Aware RPL (DA-RPL). Moreover, we propose a repeaters’ placement algorithm to meet the latency requirements. The performance of a realistic RF network is simulated and evaluated. On top of the routing solution, new asynchronous ordered transmission algorithms of UDP data packets are proposed to further enhance the overall network latency performance and mitigate the whole system congestion and interference. Experimental results show that the performance of DA-RPL is promising in terms of end-to-end delay and energy consumption. Furthermore, the ordered asynchronous transmission of data packets resulted in significant latency reduction using just a single routing metric

    Energy-efficient wireless sensor networks via scheduling algorithm and radio Wake-up technology

    Get PDF
    One of the most important requirements for wireless sensor networks (WSNs) is the energy efficiency, since sensors are usually fed by a battery that cannot be replaced or recharged. Radio wake-up - the technology that lets a sensor completely turn off and be reactivated by converting the electromagnetic field of radio waves into energy - is now one of the most emergent strategies in the design of wireless sensor networks. This work presents Scheduled on Demand Radio WakeUp (SORW), a flexible scheduler designed for a wireless sensor network where duty cycling strategy and radio wake-up technology are combined in order to optimize the network lifetime. In particular, it tries to keep sensors sleeping as much as possible, still guaranteeing a minimum number of detections per unit of time. Performances of SORW are provided through the use of OMNet++ simulator and compared to results obtained by other basic approaches. Results show that with SORW it is possible to reach a theoretical lifetime of several years, compared to simpler schedulers that only reach days of activity of the network

    Elastic hybrid MAC protocol for wireless sensor networks

    Get PDF
    The future is moving towards offering multiples services based on the same technology. Then, billions of sensors will be needed to satisfy the diversity of these services. Such considerable amount of connected devices must insure efficient data transmission for diverse applications. Wireless sensor network (WSN) represents the most preferred technology for the majority of applications. Researches in medium access control (MAC) mechanism have been of significant impact to the application growth because the MAC layer plays a major role in resource allocation in WSNs. We propose to enhance a MAC protocol of WSN to overcome traffic changes constraints. To achieve focused goal, we use elastic hybrid MAC scheme. The main interest of the developed MAC protocol is to design a medium access scheme that respect different quality of services (QoS) parameters needed by various established traffic. Simulation results show good improvement in measured parameters compared to typical protocol
    corecore