11,269 research outputs found

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    Local Mutual Exclusion for Dynamic, Anonymous, Bounded Memory Message Passing Systems

    Get PDF
    Mutual exclusion is a classical problem in distributed computing that provides isolation among concurrent action executions that may require access to the same shared resources. Inspired by algorithmic research on distributed systems of weakly capable entities whose connections change over time, we address the local mutual exclusion problem that tasks each node with acquiring exclusive locks for itself and the maximal subset of its "persistent" neighbors that remain connected to it over the time interval of the lock request. Using the established time-varying graphs model to capture adversarial topological changes, we propose and rigorously analyze a local mutual exclusion algorithm for nodes that are anonymous and communicate via asynchronous message passing. The algorithm satisfies mutual exclusion (non-intersecting lock sets) and lockout freedom (eventual success with probability 1) under both semi-synchronous and asynchronous concurrency. It requires ?(?) memory per node and messages of size ?(1), where ? is the maximum number of connections per node. We conclude by describing how our algorithm can implement the pairwise interactions assumed by population protocols and the concurrency control operations assumed by the canonical amoebot model, demonstrating its utility in both passively and actively dynamic distributed systems

    A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs

    Full text link
    The actor model is an attractive foundation for developing concurrent applications because actors are isolated concurrent entities that communicate through asynchronous messages and do not share state. Thereby, they avoid concurrency bugs such as data races, but are not immune to concurrency bugs in general. This study taxonomizes concurrency bugs in actor-based programs reported in literature. Furthermore, it analyzes the bugs to identify the patterns causing them as well as their observable behavior. Based on this taxonomy, we further analyze the literature and find that current approaches to static analysis and testing focus on communication deadlocks and message protocol violations. However, they do not provide solutions to identify livelocks and behavioral deadlocks. The insights obtained in this study can be used to improve debugging support for actor-based programs with new debugging techniques to identify the root cause of complex concurrency bugs.Comment: - Submitted for review - Removed section 6 "Research Roadmap for Debuggers", its content was summarized in the Future Work section - Added references for section 1, section 3, section 4.3 and section 5.1 - Updated citation

    Actors vs Shared Memory: two models at work on Big Data application frameworks

    Full text link
    This work aims at analyzing how two different concurrency models, namely the shared memory model and the actor model, can influence the development of applications that manage huge masses of data, distinctive of Big Data applications. The paper compares the two models by analyzing a couple of concrete projects based on the MapReduce and Bulk Synchronous Parallel algorithmic schemes. Both projects are doubly implemented on two concrete platforms: Akka Cluster and Managed X10. The result is both a conceptual comparison of models in the Big Data Analytics scenario, and an experimental analysis based on concrete executions on a cluster platform
    • …
    corecore