228 research outputs found

    Performance Study of Hybrid Spread Spectrum Techniques

    Get PDF
    This thesis focuses on the performance analysis of hybrid direct sequence/slow frequency hopping (DS/SFH) and hybrid direct sequence/fast frequency hopping (DS/FFH) systems under multi-user interference and Rayleigh fading. First, we analyze the performance of direct sequence spread spectrum (DSSS), slow frequency hopping (SFH) and fast frequency hopping (FFH) systems for varying processing gains under interference environment assuming equal bandwidth constraint with Binary Phase Shift Keying (BPSK) modulation and synchronous system. After thorough literature survey, we show that hybrid DS/FFH systems outperform both SFH and hybrid DS/SFH systems under Rayleigh fading and multi-user interference. Also, both hybrid DS/SFH and hybrid DS/FFH show performance improvement with increasing spreading factor and decreasing number of hopping frequencies

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Spectral Efficiency of Random Time-Hopping CDMA

    Full text link
    Traditionally paired with impulsive communications, Time-Hopping CDMA (TH-CDMA) is a multiple access technique that separates users in time by coding their transmissions into pulses occupying a subset of NsN_\mathsf{s} chips out of the total NN included in a symbol period, in contrast with traditional Direct-Sequence CDMA (DS-CDMA) where Ns=NN_\mathsf{s}=N. This work analyzes TH-CDMA with random spreading, by determining whether peculiar theoretical limits are identifiable, with both optimal and sub-optimal receiver structures, in particular in the archetypal case of sparse spreading, that is, Ns=1N_\mathsf{s}=1. Results indicate that TH-CDMA has a fundamentally different behavior than DS-CDMA, where the crucial role played by energy concentration, typical of time-hopping, directly relates with its intrinsic "uneven" use of degrees of freedom.Comment: 26 pages, 13 figure

    Proceedings of the Fall 1995 Advanced Digital Communication Systems

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems Laborator

    Randomized Resource Allocaion in Decentralized Wireless Networks

    Get PDF
    Ad hoc networks and bluetooth systems operating over the unlicensed ISM band are in-stances of decentralized wireless networks. By definition, a decentralized network is com-posed of separate transmitter-receiver pairs where there is no central controller to assign the resources to the users. As such, resource allocation must be performed locally at each node. Users are anonymous to each other, i.e., they are not aware of each other's code-books. This implies that multiuser detection is not possible and users treat each other as noise. Multiuser interference is known to be the main factor that limits the achievable rates in such networks particularly in the high Signal-to-Noise Ratio (SNR) regime. Therefore, all users must follow a distributed signaling scheme such that the destructive effect of interference on each user is minimized, while the resources are fairly shared. In chapter 2 we consider a decentralized wireless communication network with a fixed number of frequency sub-bands to be shared among several transmitter-receiver pairs. It is assumed that the number of active users is a realization of a random variable with a given probability mass function. Moreover, users are unaware of each other's codebooks and hence, no multiuser detection is possible. We propose a randomized Frequency Hopping (FH) scheme in which each transmitter randomly hops over a subset of sub-bands from transmission slot to transmission slot. Assuming all users transmit Gaussian signals, the distribution of the noise plus interference is mixed Gaussian, which makes calculation of the mutual information between the transmitted and received signals of each user intractable. We derive lower and upper bounds on the mutual information of each user and demonstrate that, for large SNR values, the two bounds coincide. This observation enables us to compute the sum multiplexing gain of the system and obtain the optimum hopping strategy for maximizing this quantity. We compare the performance of the FH system with that of the Frequency Division (FD) system in terms of the following performance measures: average sum multiplexing gain and average minimum multiplexing gain per user. We show that (depending on the probability mass function of the number of active users) the FH system can offer a significant improvement in terms of the aforementioned measures. In the sequel, we consider a scenario where the transmitters are unaware of the number of active users in the network as well as the channel gains. Developing a new upper bound on the differential entropy of a mixed Gaussian random vector and using entropy power inequality, we obtain lower bounds on the maximum transmission rate per user to ensure a specified outage probability at a given SNR level. We demonstrate that the so-called outage capacity can be considerably higher in the FH scheme than in the FD scenario for reasonable distributions on the number of active users. This guarantees a higher spectral efficiency in FH compared to FD. Chapter 3 addresses spectral efficiency in decentralized wireless networks of separate transmitter-receiver pairs by generalizing the ideas developed in chapter 2. Motivated by random spreading in Code Division Multiple Access (CDMA), a signaling scheme is introduced where each user's code-book consists of two groups of codewords, referred to as signal codewords and signature codewords. Each signal codeword is a sequence of independent Gaussian random variables and each signature codeword is a sequence of independent random vectors constructed over a globally known alphabet. Using a conditional entropy power inequality and a key upper bound on the differential entropy of a mixed Gaussian random vector, we develop an inner bound on the capacity region of the decentralized network. To guarantee consistency and fairness, each user designs its signature codewords based on maximizing the average (with respect to a globally known distribution on the channel gains) of the achievable rate per user. It is demonstrated how the Sum Multiplexing Gain (SMG) in the network (regardless of the number of users) can be made arbitrarily close to the SMG of a centralized network with an orthogonal scheme such as Time Division (TD). An interesting observation is that in general the elements of the vectors in a signature codeword must not be equiprobable over the underlying alphabet in contrast to the use of binary Pseudo-random Noise (PN) signatures in randomly spread CDMA where the chip elements are +1 or -1 with equal probability. The main reason for this phenomenon is the interplay between two factors appearing in the expression of the achievable rate, i.e., multiplexing gain and the so-called interference entropy factor. In the sequel, invoking an information theoretic extremal inequality, we present an optimality result by showing that in randomized frequency hopping which is the main idea in the prevailing bluetooth devices in decentralized networks, transmission of independent signals in consecutive transmission slots is in general suboptimal regardless of the distribution of the signals. Finally, chapter 4 addresses a decentralized Gaussian interference channel consisting of two block-asynchronous transmitter-receiver pairs. We consider a scenario where the rate of data arrival at the encoders is considerably low and codewords of each user are transmitted at random instants depending on the availability of enough data for transmission. This makes the transmitted signals by each user look like scattered bursts along the time axis. Users are block-asynchronous meaning there exists a delay between their transmitted signal bursts. The proposed model for asynchrony assumes the starting point of an interference burst is uniformly distributed along the transmitted codeword of any user. There is also the possibility that each user does not experience interference on a transmitted codeword at all. Due to the randomness of delay, the channels are non-ergodic in the sense that the transmitters are unaware of the location of interference bursts along their transmitted codewords. In the proposed scheme, upon availability of enough data in its queue, each user follows a locally Randomized Masking (RM) strategy where the transmitter quits transmitting the Gaussian symbols in its codeword independently from symbol interval to symbol interval. An upper bound on the probability of outage per user is developed using entropy power inequality and a key upper bound on the differential entropy of a mixed Gaussian random variable. It is shown that by adopting the RM scheme, the probability of outage is considerably less than the case where both users transmit the Gaussian symbols in their codewords in consecutive symbol intervals, referred to as Continuous Transmission (CT)

    Phase-locked loop, delay-locked loop, and linear decorrelating detector for asynchronous multirate DS-CDMA system

    Get PDF
    The performance of phase synchronization and code tracking of a digital phase-locked loop (PLL) and delay-locked loop (DLL), respectively, is investigated in wideband asynchronous multirate DS-CDMA system. Dynamic Partial Correlation (DPC) method is proposed to evaluate the autocorrelation and its power spectrum density (PSD) of the cross-correlated terms in the presence of multirate multiple access interference (MMAI) under additive white gaussian noise (AWGN) and fading channel environments. The steady-state probability density function (PDF) and variance of the phase estimator error and code tracking jitter is evaluated by solving the first-order Fokker-Planck equation. Among many linear multiuser detectors which decouple the multiple access interference from each of the interfering users, one-shot window linear decorrelating detector (LDD) based on a one bit period to reduce the complexity of the LDD has attracted wide attention as an implementation scheme. Therefore, we propose Hybrid Selection Diversity/ Maximal Ratio Combining (Hybrid SD/MRC) one-shot window linear decorrelating detector (LDD) for asynchronous DS-CDMA systems. The selection diversity scheme at the input of the Hybrid SD/MRC LDD is based on choosing the branch with the maximum signal-to-noise ratio (SNR) of all filter outputs. The MR Combining scheme at the output of the Hybrid SD/MRC LDD adopts to maximize the output SNR and thus compensates for the enhanced output noise. The Hybrid SD/MRC one-shot LDD with PLL is introduced to track its phase error and to improve the demodulation performance. The probability density functions of the maximum SNR of the SD combiner, the near-far resistance (NFR) of one-shot LDD by Gaussian approximation, and the maximum SNR of the MR combiner for Hybrid SD/MRC LDD are evaluated, and the bit error probability is obtained from these pdfs. The performance of Hybrid SD/MRC one-shot LDD is assessed in a Rayleigh fading channel
    • …
    corecore