383 research outputs found

    Stabilization of positive switched systems with time-varying delays under asynchronous switching

    Get PDF
    This paper investigates the state feedback stabilization problem for a class of positive switched systems with time-varying delays under asynchronous switching in the frameworks of continuous-time and discrete-time dynamics. The so-called asynchronous switching means that the switches between the candidate controllers and system modes are asynchronous. By constructing an appropriate co-positive type Lyapunov-Krasovskii functional and further allowing the functional to increase during the running time of active subsystems, sufficient conditions are provided to guarantee the exponential stability of the resulting closed-loop systems, and the corresponding controller gain matrices and admissible switching signals are presented. Finally, two illustrative examples are given to show the effectiveness of the proposed methods

    Stabilization of switched neural networks with time-varying delay via bumpless transfer control

    Get PDF
    This paper investigates the stabilization of switched neural networks with time-varying delay. In order to overcome the drawback that the classical switching state feedback controller may generate the bumps at switching time, a new switching feedback controller which can smooth effectively the bumps is proposed. According to mode-dependent average dwell time, new exponential stabilization results are deduced for switched neural networks under the proposed feedback controller. Based on a simple corollary, the procedures which are used to calculate the feedback control gain matrices are also obtained. Two simple numerical examples are employed to demonstrate the effectiveness of the proposed results.Peer reviewe

    Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots

    Get PDF
    This paper addresses the robust control problem of mechanical systems with hybrid dynamics in port-Hamiltonian form. It is assumed that only the position states are measurable, and time-delay and saturation constraint affect the control signal. An extended state observer is designed after a coordinate transformation. The effect of the time delay in the control signal is neutralized by applying Pade ́ approximant and augmenting the system states. An assistant system with faster convergence is developed to handle actuators saturation. Fractional-order sliding mode controller acts as a centralized controller and compensates for the undesired effects of unknown external disturbance and parameter uncertainties using the observer estimation results. Stability analysis shows that the closed-loop system states, such as the observer tracking error, and the position/velocity tracking errors, are finite-time stable. Simulation studies on a two ball-playing juggler robot with three degrees of freedom validate the theoretical results’ effectiveness

    Robust Observer Design for Hybrid Dynamical Systems with Linear Maps and Approximately Known Jump Times

    Get PDF
    This paper proposes a general framework for the state estimation of plants given by hybrid systems with linear flow and jump maps, in the favorable case where their jump events can be detected (almost) instantaneously. A candidate observer consists of a copy of the plant's hybrid dynamics with continuous-time and/or discrete-time correction terms multiplied by two constant gains, and with jumps triggered by those of the plant. Assuming that the time between successive jumps is known to belong to a given closed set allows us to formulate an augmented system with a timer which keeps track of the time elapsed between successive jumps and facilitates the analysis. Then, since the jumps of the plant and of the observer are synchronized, the error system has time-invariant linear flow and jump maps, and a Lyapunov analysis leads to sufficient conditions for the design of the observer gains for uniform asymptotic stability in three different settings: continuous and discrete updates, only discrete updates, and only continuous updates. These conditions take the form of matrix inequalities, which we solve in examples including cases where the time between successive jumps is unbounded or tends to zero (Zeno behavior), and cases where either both the continuous and discrete dynamics, only one of them, or neither of them are detectable. Finally, we study the robustness of this approach when the jumps of the observer are delayed with respect to those of the plant. We show that if the plant's trajectories are bounded and the time between successive jumps is lower-bounded away from zero, the estimation error is bounded, and arbitrarily small outside the delay intervals between the plant's and the observer's jumps

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine
    corecore